Skip to main content
Log in

Conductivity and dielectric studies of Li2SnO3

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium stannate (Li2SnO3) has been prepared by solution evaporation method. The precursor obtained is sintered at 800°C for 5, 6, and 7 h, respectively. X-ray diffractogram confirmed that the sample obtained after sintering is Li2SnO3. The pelletized Li2SnO3 after heating at 500 °C for 3 h is used for electrochemical impedance spectroscopy characterization. Impedance measurements have been carried out over frequency range from 50 Hz to 1 MHz and temperature range from 563 to 633 K. The conductivity–temperature relationship is Arrhenian. Several important parameters such as activation energy, ionic hopping frequency and its rate, carrier concentration term, mobile ion number density, ionic mobility, and diffusion coefficient have been determined. The characteristics of log conductivity and log ionic hopping rate against temperature for the system suggest that the conduction and ionic hopping processes are thermally activated. The values of activation energy for conduction and relaxation processes as well as activation enthalpy for ionic hopping are about the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395–1397

    Article  CAS  Google Scholar 

  2. Zhang R, Lee JY, Liu ZL (2002) J Power Sources 112:596–605

    Article  CAS  Google Scholar 

  3. Inagaki M, Nakai S, Ikeda T (1988) J Nucl Mater 160:224–228

    Article  CAS  Google Scholar 

  4. Moritani K, Moriyama H (1997) J Nucl Mater 248:132–139

    Article  CAS  Google Scholar 

  5. Kovacheva D, Petrov K (1998) Solid State Ionics 109:327–332

    Article  CAS  Google Scholar 

  6. Courtney IA, Dahn JR (1997) J Electrochem Soc 144:2045–2052

    Article  CAS  Google Scholar 

  7. Belliard F, Irvine JTS (2001) Ionics 7:16–21

    Article  CAS  Google Scholar 

  8. Zhang DW, Zhang SQ, Jin Y, Yi TH, Xie S, Chen CH (2006) J Alloys Compd 415:229–233

    Article  CAS  Google Scholar 

  9. Vaughey JT, Geyer AM, Fackler N, Johnson CS, Edstrom K, Bryngelsson H, Benedek R, Thackeray MM (2007) J Power Sources 174:1052–1056

    Article  CAS  Google Scholar 

  10. Hodeau JL, Marezio M, Santoro A, Roth RS (1982) J Solid State Chem 45:170–179

    Article  CAS  Google Scholar 

  11. Kreuzburg G, Stewner F, Hoppe R (1970) Z Anorg Allg Chem 379:242–254

    Article  CAS  Google Scholar 

  12. Mather GC (2000) J Mater Chem 10:2219–2230

    Article  CAS  Google Scholar 

  13. Tarakina NV, Denisova TA, Maksimova LG, Baklanova YV, Tyutyunnik AP, Berger IF, Zubkov VG, Tendeloo G (2009) Z Kristallogr Suppl 30:375–380

    Article  Google Scholar 

  14. Asou M, Terai T, Takahashi Y (1990) J Nucl Mater 175:42–46

    Article  CAS  Google Scholar 

  15. Asano M, Kato Y, Harada T, Mizutani Y, Yamawaki M (1993) J Nucl Mater 201:156–161

    Article  CAS  Google Scholar 

  16. Huang Y, Wang G-J, Wu T-H, Peng S-Y (1998) J Nat Gas Chem 7:102–107

    CAS  Google Scholar 

  17. Vītiņš Ģ, Ķizāne G, Lūsis A, Tīliks J (2002) J Solid State Electrochem 6:311–319

    Google Scholar 

  18. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sanjeeviraja C (2010) J Rare Earths 28:435–438

    Article  CAS  Google Scholar 

  19. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sakunthala A (2010) Ionics 16:317–321

    Article  CAS  Google Scholar 

  20. Selvasekarapandian S, Vijayakumar M (2002) Solid State Ionics 148:329–334

    Article  CAS  Google Scholar 

  21. Bhuvaneswari MS, Selvasekarapandian S, Kamishima O, Kawamura J, Hattori T (2006) J Solid State Electrochem 10:434–438

    Article  CAS  Google Scholar 

  22. Selvasekarapandian S, Vijayakumar M (2003) Mater Chem Phys 80:29–33

    Article  CAS  Google Scholar 

  23. Zhang JL, Lu YD, Li BR (1993) Proceedings of 43rd Electronic Components & Technology Conference, 1–4 June 1993, Orlando, USA, pp 1095–1198

  24. Vijayakumar M, Selvasekarapandian S (2003) Mater Res Bull 38:1735–1743

    Article  CAS  Google Scholar 

  25. Govindaraj G, Baskaran N, Shahi K, Monoravi P (1995) Solid State Ionics 76:47–55

    Article  CAS  Google Scholar 

  26. Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja (2011) Ionics 17:201–207

    Article  CAS  Google Scholar 

  27. Linford RG (1988) Experimental techniques for studying polymer electrolytes. In: Chowdari BVR, Radhakrishna S (eds) Solid state ionics devices. World Scientific, Singapore, pp 551–571

    Google Scholar 

  28. Selvasekarapandian S, Bhuvaneswari MS, Fujihara S, Koji S (2006) Acta Materialia 54:1767–1776

    Article  CAS  Google Scholar 

  29. Almond DP, West AR (1983) Solid State Ionics 9–10:277–282

    Article  Google Scholar 

  30. Almond DP, West AR (1987) Solid State Ionics 23:27–35

    Article  CAS  Google Scholar 

  31. Vijayakumar M, Hirankumar G, Bhuvaneswari MS, Selvasekarapandian S (2003) J Power Sources 117:143–147

    Article  CAS  Google Scholar 

  32. Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Hirankumar G, Baskaran R, Angelo PC (2006) J Power Sources 157:533–536

    Article  CAS  Google Scholar 

  33. Almond DP (1989) Mater Chem Phys 23:211–223

    Article  CAS  Google Scholar 

  34. Akgul U, Ergin Z, Sekerci M, Atici Y (2008) Vacuum 82:340–345

    Article  Google Scholar 

  35. Orliukas A, Dindune A, Kanepe Z, Ronis J, Kazakevicius E, Kežionis A (2003) Solid State Ionics 157:177–181

    Article  CAS  Google Scholar 

  36. Mariappan CR, Govindaraj G (2002) Mater Sci Eng B94:82–88

    Article  CAS  Google Scholar 

  37. El-Nahass MM, Farid AM, El-Rahman KFA, Ali HAM (2008) Physica B 403:2331–2337

    Article  CAS  Google Scholar 

  38. Dutta P, Biswas S, De SK (2002) Mater Res Bull 37:193–200

    Article  CAS  Google Scholar 

  39. Baskaran N, Govindaraj G, Narayanasamy A (1997) Solid State Ionics 98:217–227

    Article  CAS  Google Scholar 

  40. Mellander B-E, Albinsson I (1996) Electric and dielectric properties of polymer electrolytes. In: Chowdari BVR, Dissanayake MAKL, Careem MA (eds) Solid state ionics: new developments. World Scientific, Singapore, pp 83–95

    Google Scholar 

  41. Ahmad MM, Yamada K, Okuda T (2003) Physica B 339:94–100

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank the University of Malaya for financial support (PS326/2009B and RG087/09AFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Majid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, L.P., Buraidah, M.H., Nor, A.F.M. et al. Conductivity and dielectric studies of Li2SnO3 . Ionics 18, 655–665 (2012). https://doi.org/10.1007/s11581-012-0667-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0667-2

Keywords

Navigation