Skip to main content
Log in

Influence of structural and chemical properties on electron transport in mesoporous ZnO-based dye-sensitized solar cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Two chemical bath deposition (CBD) solutions were prepared at two different temperatures of 60 and 80 °C for dye-sensitized solar cell (DSSC) application. The deposition time was varied from 12, 18, and 24 h. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed a transformation of hydrozincite into ZnO after calcined at 300 °C. The flower-like structure was observed by scanning electron microscopy (SEM) analysis. The ZnO photoanode deposited at 80 °C for 24 h showed the highest incident photon to charge carrier efficiency (IPCE) value of 5.25 %. The power conversion efficiency, η increased from 1.81 to 2.45 % for the photoanode deposited at 60 and 80 °C, respectively. The effective electron lifetimes, τ eff of 6.36 ms was measured as much shorter than the TiO2-based DSSC (τ eff of 25 to 160 ms). The effective electron diffusion coefficient, D eff, increased from 1.7 × 10−3 to 4.7 × 10−3 cm2.s−1 when the deposition temperature increases from 60 to 80 °C. Effective rate constant for recombination, k eff of 157 s−1 was calculated for both samples. The results and analysis of the film’s surface structure, morphology, electron diffusion, and recombination inside the mesoporous ZnO photoanode proved the applicability of ZnO for the DSSC’s application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qifeng Z, Christopher SD, Xiaoyuan Z, Guozhong C (2009) Adv Mater 21:4087–4108

    Article  Google Scholar 

  2. Omar A, Abdullah H (2014) Renew Sustain Energy Rev 31:149–157

    Article  CAS  Google Scholar 

  3. Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A (2004) J Phys Chem B 108:8106–8118

    Article  CAS  Google Scholar 

  4. Chiu W-H, Lee C-H, Cheng H-M, Lin H-F, Liao S-C, Wu J-M, Hsieh W-F (2009) Energy Environ Sci 2:694–698

    Article  CAS  Google Scholar 

  5. Abdullah H, Omar A, Yarmo MA, Shaari S, Taha MR (2013) J Mater Sci Mater Electron 24:3603–3610

    Article  CAS  Google Scholar 

  6. Pitarch A, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2004) Phys Chem Chem Phys 6:2983–2988

    Article  CAS  Google Scholar 

  7. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  8. Ku C-H, Wu J-J (2007) Nanotechnology 18:1–9

    Article  Google Scholar 

  9. Ko SH, Lee D, Kang HW, Nam KH, Yeo JY, Hong SJ, Grigoropoulos CP, Sung HJ (2011) Nano Lett 11:666–671

    Article  CAS  Google Scholar 

  10. Liu Z, Li Y, Liu C, Ya J, Zhao W, Lei E et al (2011) Solid State Sci 13:1354–1359

    Article  CAS  Google Scholar 

  11. Fang X, Peng L, Shang X, Zhang Z (2011) Thin Sol Film 519:6307–6312

    Article  CAS  Google Scholar 

  12. Yengantiwar A, Sharma R, Game O, Banpurkar A (2011) Curr Appl Phys 11:S113–S116

    Article  Google Scholar 

  13. Abdullah H, Ariyanto NP, Shaari S, Yuliarto B, Junaidi S (2009) Am J Eng Appl Sci 2:236–240

    Article  Google Scholar 

  14. Umar A (2009) Nanoscale Res Lett 4:1004–1008

    Article  CAS  Google Scholar 

  15. Choopun S, Tubtimtae A, Santhaveesuk T, Nilphai S, Wongrat E, Hongsith N (2009) Appl Surf Sci 256:998–1002

    Article  CAS  Google Scholar 

  16. Lee C-H, Chiu W-H, Lee K-M, Yen W-H, Lin H-F, Hsieh W-F, Wu J-M (2010) Electrochim Acta 55:8422–8429

    Article  CAS  Google Scholar 

  17. Baxtor JB, Aydil ES (2006) Sol Energy Mat Sol Cells 90:607–622

    Article  Google Scholar 

  18. Cheng H-M, Chiu W-H, Lee C-H, Tsai S-Y, Hsieh W-F (2008) J Phys Chem 112:16359–16364

    CAS  Google Scholar 

  19. Herman I, Yeo J, Hong S, Lee D, Nam KH, Choi J-H, Hong W-H, Lee D, Grigoropoulos CP, Ko SH (2012) Nanotechnology 23:194005

    Article  Google Scholar 

  20. Gonzalez-Valls I, Lira-Cantu M (2009) Energy Environ Sci 2:19–34

    Article  CAS  Google Scholar 

  21. Anta JA, Guillén E, Tena-Zaera R (2012) J Phys Chem C 116:11413–11425

    Article  CAS  Google Scholar 

  22. Bisquert J (2002) J Phys Chem B 106:325–333

    Article  CAS  Google Scholar 

  23. Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Electrochem Acta 47:4213–4225

    Article  CAS  Google Scholar 

  24. Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S (2006) J Phys Chem B 110:13872–13880

    Article  CAS  Google Scholar 

  25. Ariyanto NP (2011) Study of synthesis of mesoporous zinc oxide film as photoanode towards performance of dye-sensitized solar cell. MSc Dissertation, Universiti Kebangsaan Malaysia

  26. Ariyanto NP, Abdullah H, Shaari S, Junaidi S, Yuliarto B (2009) World Appl Sci J 6:764–768

    CAS  Google Scholar 

  27. Ariyanto NP, Abdullah H, Syarif J, Yuliarto B, Shaari S (2010) Funct Mater Lett 3:303–307

    Article  CAS  Google Scholar 

  28. Musić S, Popović S, Maljković M, Dragčević Ð (2002) J Alloys Compd 347:324–332

    Article  Google Scholar 

  29. Kanari N, Mishra D, Gaballah I, Duppree B (2004) Thermochim Acta 410:93–100

    Article  CAS  Google Scholar 

  30. Hales MC, Frost RL (2007) Polyhedron 26:4955–4962

    Article  CAS  Google Scholar 

  31. Li Z, Shen X, Feng X, Wang P, Wu Z (2005) Thermochim Acta 438:102–106

    Article  CAS  Google Scholar 

  32. Wahab R, Ansari SG, Kim YS, Dar MA, Shin HS (2008) J Alloys Compd 461:66–71

    Article  CAS  Google Scholar 

  33. Gadsten JA (1975) Infrared spectra of minerals and related inorganic compound. Butterworth, London

    Google Scholar 

  34. Abdullah H, Habibi S (2013) Int J Photoenergy 2013:568904

    Article  Google Scholar 

  35. Akhavan O, Azimirad R, Safa S (2011) Mat Chem Phys 130:598–602

    Article  CAS  Google Scholar 

  36. Abdullah H, Razali MZ, Shaari S, Taha MR (2013) Electron Mater Lett. doi:10.1007/s13391-013-3132-0

    Google Scholar 

  37. Kakiuchi K, Hosono H, Fujihara S (2006) J Photochem Photobiol A 179:81–86

    Article  CAS  Google Scholar 

  38. Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt A, Lindquist SE (1997) J Phys Chem B 101:2598–2601

    Article  CAS  Google Scholar 

  39. Shen W, Tang J, Yang R, Cong H, Bao X, Wang Y et al (2014) RSC Adv 4:4379–4386

    Article  CAS  Google Scholar 

  40. Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H (2006) J Phys Chem B 110:25210–25221

    Article  CAS  Google Scholar 

  41. Omar A, Abdullah H, Yarmo MA, Shaari S, Taha MR (2013) J Phys D Appl Phys 46:1665503

    Article  Google Scholar 

  42. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Sol Energy Mat Sol Cells 87:117–131

    Article  CAS  Google Scholar 

  43. Wang Q, Moser JE, Grätzel M (2005) J Phys Chem B 109:14945–14953

    Article  CAS  Google Scholar 

  44. Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin SM, Gratzel M (2007) J Phys Chem C 111:6550–6560

    Article  CAS  Google Scholar 

  45. Hauch A, Georg A (2001) Electrochim Acta 46:3457–3466

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by project no.: UKM-DLP-2011-056 and Photonic Technology Laboratory, Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Ariyanto, N.P., Yuliarto, B. et al. Influence of structural and chemical properties on electron transport in mesoporous ZnO-based dye-sensitized solar cell. Ionics 21, 251–261 (2015). https://doi.org/10.1007/s11581-014-1171-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1171-7

Keywords

Navigation