Skip to main content

Advertisement

Log in

Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) mixed with different molecular weight percentages (wt.%) of magnesium nitrate (Mg(NO3)2) was prepared by using solution casting technique. X-ray diffraction studies lead the reduction of crystalline nature by the addition of magnesium nitrate to the polymeric matrix. The complex formation between polymer and salt confirmed by Fourier transform infrared spectroscopy studies. Differential scanning calorimetry shows that the glass transition temperature decreases with increase in magnesium salt concentration and the thermal stability of PVA–PVP–Mg(NO3)2 complexes. The maximum ionic conductivity σ ~ 3.78 × 10−5 S cm−1 was obtained for 50PVA–50PVP–30 wt.% of Mg(NO3)2 polymer blend electrolyte at room temperature (303 K). The conductivity–temperature plot is found to follow the Arrhenius behavior, which showed the decrease in activation energy with the increasing salt concentration. The transference number data indicated the dominance of ion-type charge transport in these polymer blend electrolytes. The solid-state electrochemical cells were fabricated, and their discharge profiles were studied for this polymer blend electrolyte system under a constant load of 100 kΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scrosati B (1993) Application of electroactive polymers. Chapman and Hall, London

    Book  Google Scholar 

  2. Polu AR, Kumar R, Joshi GM (2014) Ionics 20:675–679

    Article  CAS  Google Scholar 

  3. Serhat V, Metin AK, Cihangir T, Idris MA, Levent T (2006) Solid State Sci 8:1477–1483

    Article  Google Scholar 

  4. Ratner MA, Shriver DF (1988) Chem Rev 88:109–124

    Article  CAS  Google Scholar 

  5. Cherng JY, Munshi MZA, Owens BB, Smyrl WH (1988) Solid State Ionics 28:857–861

    Article  Google Scholar 

  6. Rocco AM, Pereira RP, Felisberti MI (2001) Polymer 42:5199–5205

    Article  CAS  Google Scholar 

  7. Abdelrazek EM, Elashmawi IS, El-Khodary A, Yassin A (2010) Curr Appl Phys 10:607–613

    Article  Google Scholar 

  8. Yang CC, Lin SJ, Wu GM (2005) Mater Chem Phys 92:251–255

    Article  CAS  Google Scholar 

  9. Pavani Y, Ravi M, Bhavani S, Sharma AK, Rao VVRN (2012) Polym Eng Sci 52:1685–1692

    Article  CAS  Google Scholar 

  10. Feng H, Feng Z, Shen L (1993) Polymer 34:2516–2519

    Article  CAS  Google Scholar 

  11. Zhang X, Takegoshi K, Hikichi K (1992) Polymer 33:712–717

    Article  CAS  Google Scholar 

  12. Zieba JJ, Zhang Y, Prasad PN (1992) Sol–Gel Opt II 1758:287

    Google Scholar 

  13. Subba Reddy CV, Sharma AK, Rao VVRN (2006) Polymer 47:1318–1323

    Article  CAS  Google Scholar 

  14. Rajeswari N, Pandian SS, Karthikeyan S, Sanjeeviraja C, Iwai Y, Kawamura J (2013) Ionics 19:1105–1113

    Article  CAS  Google Scholar 

  15. Hatta FF, Yahya MZA, Ali AMM, Subban RHY, Harun MK, Mahamad AA (2005) Ionics 11:418–422

    Article  CAS  Google Scholar 

  16. Chithra MM, Kesavan K, Rajedran S (2014) Ionics 20:439–443

    Article  Google Scholar 

  17. Aravindan V, Vickraman P (2009) Polym Eng Sci 49:2109–2115

    Article  CAS  Google Scholar 

  18. Li Y, Xiao W, Li X, Miao C, Guo H, Wang Z (2014) Ionics. doi:10.1007/s11581-014-1081-8

    Google Scholar 

  19. Gregory TD, Hoffman RJ, Winterton RC (1990) J Electrochem Soc 137:775–780

    Article  CAS  Google Scholar 

  20. Novak P, Imhof R, Haas O (1999) Electrochim Acta 45:351–367

    Article  CAS  Google Scholar 

  21. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Nature 407:724–727

    Article  CAS  Google Scholar 

  22. Polu AR, Kumar R (2013) Int J Polym Mater 62:76–80

    Article  CAS  Google Scholar 

  23. Polu AR, Kumar R (2013) Chin J Polym Sci 31:641–648

    Article  CAS  Google Scholar 

  24. Polu AR, Kumar R (2013) Adv Mat Lett 4:543–547

    CAS  Google Scholar 

  25. Polu AR, Kumar R (2011) Bull Mater Sci 34:1063–1067

    Article  CAS  Google Scholar 

  26. Matsumoto M, Uno T, Kubo M, Itoh T (2013) Ionics 19:615–622

    Article  CAS  Google Scholar 

  27. Hodge RM, Edward GH, Simon GP (1996) Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  28. Rajendran S, Sivakumar M, Subadevi R (2004) Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  29. Abdelrazek EM, Elashmawi IS, Ragab HM (2008) Physica B 403:3097–3104

    Article  CAS  Google Scholar 

  30. Wu KH, Wang YR, Hwu WH (2003) Polym Degrad Stab 79:195–200

    Article  CAS  Google Scholar 

  31. Walsh DJ (1989) ‘Polymer Blends’, in comprehensive polymer science, vol. 2, Booth C (eds), Price C, Pergamon Press, Oxford, UK, pp 135–154

  32. Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Solid State Ionics 104:267–276

    Article  CAS  Google Scholar 

  33. Subramania A, Kalyana Sundaram NT, Sukumar N (2005) J Power Sources 141:188–192

    Article  CAS  Google Scholar 

  34. Maissel LI, Glang R (1970) Handbook of thin film technology. McGraw-Hill, New York

  35. Aravindan V, Vickraman P (2007) Solid State Sci 9:1069–1073

    Article  CAS  Google Scholar 

  36. Almond DP, West AR (1987) Solid State Ionics 23:27–35

    Article  CAS  Google Scholar 

  37. Wagner JB, Wagner C (1957) Chem Phys 26:1597–1601

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anji Reddy Polu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polu, A.R., Kumar, R. & Rhee, HW. Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21, 125–132 (2015). https://doi.org/10.1007/s11581-014-1174-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1174-4

Keywords

Navigation