Skip to main content

Advertisement

Log in

Silver, gold, and silver@gold nanoparticle-anchored l-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Fuel cells have been attracting more and more attention in recent decades due to high-energy demands, fossil fuel depletions, and environmental pollution throughout world. In this study, we report the synthesis of metallic and bimetallic nanoparticle (AgNP, AuNP, and Ag@AuNP)-involved l-cysteine-functionalized reduced graphene oxide nanocomposite (AgNPs/cis/rGO, AuNPs/cis/rGO, and Ag@Au/cis/rGO) and their applications as an electrocatalyst for methanol electro-oxidation. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Experimental results demonstrated that the prepared nanocomposites enhanced electrochemical efficiency for methanol electro-oxidation with regard to diffusion efficiency, oxidation potential, and forward oxidation peak current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ping J, Zhou Y, Wu Y, Papper V, Boujday S, Marks RS, Steele TWJ (2015) Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens Bioelectron 64:373–385

    Article  CAS  Google Scholar 

  2. Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10(17):3480–3498

    Article  CAS  Google Scholar 

  3. Jing Y, Zhou Z, Cabrera CR, Chen Z (2014) Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J Mater Chem A 2(31):12104–12122

    Article  CAS  Google Scholar 

  4. Shao JJ, Lv W, Yang QH (2014) Self-assembly of graphene oxide at interfaces. Adv Mater 26(32):5586–5612

    Article  CAS  Google Scholar 

  5. Liao L, Peng H, Liu Z (2014) Chemistry makes graphene beyond graphene. J Am Chem Soc 136(35):12194–12200

    Article  CAS  Google Scholar 

  6. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    Article  CAS  Google Scholar 

  7. Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4(9):562–566

    Article  CAS  Google Scholar 

  8. Kim Y, Park J, Kang J, Yoo JM, Choi K, Kim ES, Choi JB, Hwang C, Novoselov KS, Hong BH (2014) A highly conducting graphene film with dual-side molecular n-doping. Nanoscale 6(16):9545–9549

    Article  CAS  Google Scholar 

  9. Goli P, Ning H, Li X, Lu CY, Novoselov KS, Balandin AA (2014) Thermal properties of graphene-copper-graphene heterogeneous films. Nano Lett 14(3):1497–1503

    Article  CAS  Google Scholar 

  10. Sanghavi BJ, Varhue W, Chávez JL, Chou CF, Swami NS (2014) Electrokinetic preconcentration and detection of neuropeptides at patterned graphene-modified electrodes in a nanochannel. Anal Chem 86(9):4120–4125

    Article  CAS  Google Scholar 

  11. Gupta VK, Yola ML, Eren T, Kartal F, Çaǧlayan MO, Atar N (2014) Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols. J Mol Liq 190:133–138

    Article  CAS  Google Scholar 

  12. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12(5):743–754

    Article  CAS  Google Scholar 

  13. Yola ML, Eren T, Atar N (2014) A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem Eng J 250:288–294

    Article  CAS  Google Scholar 

  14. Yola ML, Eren T, Atar N, Wang S (2014) Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem Eng J 242:333–340

    Article  CAS  Google Scholar 

  15. Sanghavi BJ, Kalambate PK, Karna SP, Srivastava AK (2014) Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta 120:1–9

    Article  CAS  Google Scholar 

  16. Sanghavi BJ, Mobin SM, Mathur P, Lahiri GK, Srivastava AK (2013) Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens Bioelectron 39(1):124–132

    Article  CAS  Google Scholar 

  17. Karimi-Maleh H, Tahernejad-Javazmi F, Ensafi AA, Moradi R, Mallakpour S, Beitollahi H (2014) A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens Bioelectron 60:1–7

    Article  CAS  Google Scholar 

  18. Yola ML, Eren T, Atar N (2014) A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 125:38–47

    Article  CAS  Google Scholar 

  19. Gupta VK, Yola ML, Atar N, Üstündaǧ Z, Solak AO (2014) Electrochemical studies on graphene oxide-supported metallic and bimetallic nanoparticles for fuel cell applications. J Mol Liq 191:172–176

    Article  Google Scholar 

  20. Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285

    Article  CAS  Google Scholar 

  21. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  22. Gupta VK, Atar N, Yola ML, Üstündaǧ Z, Uzun L (2014) A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48(1):210–217

    Article  CAS  Google Scholar 

  23. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37–45

    Article  CAS  Google Scholar 

  24. Gu CD, Huang ML, Ge X, Zheng H, Wang XL, Tu JP (2014) NiO electrode for methanol electro-oxidation: Mesoporous vs. nanoparticulate. Int J Hydrog Energy 39(21):10892–10901

    Article  CAS  Google Scholar 

  25. Zhao D, Xu BQ (2006) Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angewandte Chemie - Int Edition 45(30):4955–4959

    Article  CAS  Google Scholar 

  26. Knecht MR, Weir MG, Frenkel AI, Crooks RM (2008) Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configuration. Chem Mater 20(3):1019–1028

    Article  CAS  Google Scholar 

  27. Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel AI, Chupas P (2009) Structural and architectural evaluation of bimetallic nanoparticles: a case study of pt-ru core-shell and alloy nanoparticles. ACS Nano 3(10):3127–3137

    Article  CAS  Google Scholar 

  28. Ruan D, Gao F, Gu Z (2014) Enhanced Electrochemical properties of surface roughed Pt nanowire electrocatalyst for methanol oxidation. Electrochim Acta 147:225–231

    Article  CAS  Google Scholar 

  29. Ye L, Li Z, Zhang L, Lei F, Lin S (2014) A green one-pot synthesis of Pt/TiO2/Graphene composites and its electro-photo-synergistic catalytic properties for methanol oxidation. J Colloid Interface Sci 433:156–162

    Article  CAS  Google Scholar 

  30. Zhang H, Gu C-D, Huang M-L, Wang X-L, Tu J-P (2013) Anchoring three-dimensional network structured Ni–P nanowires on reduced graphene oxide and their enhanced electrocatalytic activity towards methanol oxidation. Electrochem Commun 35:108–111

    Article  CAS  Google Scholar 

  31. Tong YY, Gu CD, Zhang JL, Huang ML, Tang H, Wang XL, Tu JP (2015) Three-dimensional astrocyte-network Ni-P-O compound with superior electrocatalytic activity and stability for methanol oxidation in alkaline environments. J Mater Chem A 3:4669–4678

    Article  CAS  Google Scholar 

  32. Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47(22–23):3663–3674

    Article  CAS  Google Scholar 

  33. Falcão DS, Oliveira VB, Rangel CM, Pinto AMFR (2015) Experimental and modeling studies of a micro direct methanol fuel cell. Renew Energy 74:464–470

    Article  Google Scholar 

  34. Chen X, Si C, Gao Y, Frenzel J, Sun J, Eggeler G, Zhang Z (2014) Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction. J Power Sources 273:324–332

    Article  Google Scholar 

  35. Huang J, Zang J, Zhao Y, Dong L, Wang Y (2014) One-step synthesis of nanocrystalline TiO2-coated carbon nanotube support for Pt electrocatalyst in direct methanol fuel cell. Mater Lett 137:335–338

    Article  CAS  Google Scholar 

  36. Mellinger ZJ, Kelly TG, Chen JG (2012) Pd-modified tungsten carbide for methanol electro-oxidation: From surface science studies to electrochemical evaluation. ACS Catal 2(5):751–758

    Article  CAS  Google Scholar 

  37. Di Noto V, Negro E, Gliubizzi R, Lavina S, Pace G, Gross S, Maccato C (2007) A Pt-Fe carbon nitride nano-electrocatalyst for polymer electrolyte membrane fuel cells and direct-methanol fuel cells: Synthesis, characterization, and electrochemical studies. Adv Funct Mater 17(17):3626–3638

    Article  Google Scholar 

  38. Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211

    Article  CAS  Google Scholar 

  39. Gupta VK, Atar N, Yola ML, Eryilmaz M, Torul H, Tamer U, Boyaci TH, Üstündaǧ Z (2013) A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J Colloid Interface Sci 406:231–237

    Article  CAS  Google Scholar 

  40. Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: Application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31

    Article  CAS  Google Scholar 

  41. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110(9):4002–4006

    Article  CAS  Google Scholar 

  42. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154

    Article  CAS  Google Scholar 

  43. Bradder P, Ling SK, Wang S, Liu S (2011) Dye adsorption on layered graphite oxide. J Chem Eng Data 56(1):138–141

    Article  CAS  Google Scholar 

  44. Wu Z, Dong F, Zhao W, Wang H, Liu Y, Guan B (2009) The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20(23):1–9

  45. Zhang J, Tu JP, Du GH, Dong ZM, Su QM, Xie D, Wang XL (2013) Pt supported self-assembled nest-like-porous WO3 hierarchical microspheres as electrocatalyst for methanol oxidation. Electrochim Acta 88:107–111

    Article  CAS  Google Scholar 

  46. Lee YW, Ko AR, Han SB, Kim HS, Kim DY, Kim SJ, Park KW (2010) Cuboctahedral Pd nanoparticles on WC for enhanced methanol electrooxidation in alkaline solution. Chem Commun 46(48):9241–9243

    Article  CAS  Google Scholar 

  47. Gao L, Yue W, Tao S, Fan L (2013) Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation. Langmuir 29(3):957–964

    Article  CAS  Google Scholar 

  48. Liu J, Cao L, Huang W, Li Z (2012) Direct electrodeposition of PtPd alloy foams comprised of nanodendrites with high electrocatalytic activity for the oxidation of methanol and ethanol. J Electroanal Chem 686:38–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK), with project number 113Z264. We would like to thank TUBITAK for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necip Atar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atar, N., Eren, T., Demirdögen, B. et al. Silver, gold, and silver@gold nanoparticle-anchored l-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation. Ionics 21, 2285–2293 (2015). https://doi.org/10.1007/s11581-015-1395-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1395-1

Keywords

Navigation