Skip to main content
Log in

Influence of tetraborate anions on manganese electrodeposition in an anion-exchange membrane electrolysis reactor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The influences of tetraborate anions on manganese electrodeposition in an anion-exchange membrane electrolysis reactor were investigated. The experimental results of manganese electrodeposition indicate that a certain amount of tetraborate anions can increase cathode current efficiency and initial pH 7.0–8.0 is suitable for high cathode current efficiency. X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis show the nanocrystalline structure and impact morphology of electrodeposited manganese. The purity of electrodeposited manganese is above 99.88 %. The tests of tetraborate anions on buffer capacity (β) and pH value of the electrolyte near the cathode surface confirm that tetraborate anions facilitate manganese electrodeposition. Tetraborate anions can improve concentration polarization of Mn2+ ions and then increase the overpotential of hydrogen evolution reaction. Therefore, ammonium tetraborate can reduce the hydrogen embrittlement, pore, and pitting negative effect on electrodeposit surface, to improve the corrosion resistance of electrodeposited manganese. After tetraborate anions being added in electrolyte, weight loss measurement indicates that the corrosion resistance of electrodeposited manganese is improved. Electrochemical measurements testify that corrosion resistance of electrodeposited manganese containing tetraborate anions in electrolyte is reflected by less negative corrosion potential and higher impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Deepti SP, Sanjay MC, John UKO (2016) A review of technologies for manganese removal from wastewaters. Chem Eng J 4:468–487

    Google Scholar 

  2. Aguilar C, Guzman P, Lascano S, Parra C, Bejar L, Medina A, Guzman D (2016) Solid solution and amorphous phase in Ti-Nb-Ta-Mn systems synthesized by mechanical alloying. J Alloy Compd 670:346–355

    Article  CAS  Google Scholar 

  3. Araujo JAMD, Castro MDMRD, Lins VDFC (2006) Reuse of furnace fines of ferro alloy in the electrolytic manganese production. Hydrometallurgy 84:204–210

    Article  Google Scholar 

  4. Lu JM, Dreisinger D, Glück T (2014) Manganese electrodeposition-a literature review. Hydrometallurgy 141:105–116

    Article  CAS  Google Scholar 

  5. Wei QF, Ren XL, Du J, Wei SJ, Hu SR (2010) Study of the electrodeposition conditions of metallic manganese in an electrolytic membrane reactor. Miner Eng 23:578–586

    Article  CAS  Google Scholar 

  6. Gamali IV, Stender VV (1967) Effect of sulfite and selenite ions on the electrodeposition of manganese from solutions containing certain organic compounds. J Appl Chem USSR (English translation edition) 40:307–310

    Google Scholar 

  7. Ding LF, Fan X, Du J, Liu ZH, Tao CY (2014) Influence of three N-based auxiliary additives during the electrodeposition of manganese. Int J Miner Process 130:34–41

    Article  CAS  Google Scholar 

  8. Galvanauskaite N, Sulcius A, Griskonis E, Diaz-Arista P (2011) Influence of Te(VI) additive on manganese electrodeposition at room temperature and coating properties. Trans Inst Metal Finish 89:325–332

    Article  CAS  Google Scholar 

  9. Griškonis E, Šulčius A, Žmuidzinavičienė N (2014) Influence of temperature on the properties of Mn coatings electrodeposited from the electrolyte containing Te(VI) additive. J Appl Electrochem 44:1117–1125

    Article  Google Scholar 

  10. Gong J, Zangari G (2002) Electrodeposition and characterization of manganese coatings. J Electrochem Soc 149:209–217

    Article  Google Scholar 

  11. Ren XL, Wei QF, Hu SR, Wei SJ (2010) The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. J Hazard Mater 181:908–915

    Article  CAS  Google Scholar 

  12. Ren XL, Wei QF, Liu Z, Liu J (2012) Electrodeposition conditions of metallic nickel in electrolytic membrane reactor. T Nonferr Metal Soc China 22:467–475

    Article  CAS  Google Scholar 

  13. Carrillo-Abad J, García-Gabaldón M, Ortega E, Pérez-Herranz V (2012) Recovery of zinc from spent pickling solutions using an electrochemical reactor in presence and absence of an anion-exchange membrane: Galvanostatic operation. Sep Puri Technol 98:366–374

    Article  CAS  Google Scholar 

  14. Wu Y, Chang D, Kim D, Kwon SC (2003) Influence of boric acid on the electrodepositing process and structures of Ni-W alloy coating. Surf Coat Tech 173:259–264

    Article  CAS  Google Scholar 

  15. Ji J, Cooper WC, Dreisinger DB, Peters E (1995) Surface pH measurements during nickel electrodeposition. J Appl Electrochem 25:642–650

    Article  CAS  Google Scholar 

  16. Tilak BV, Gendron AS, Mosoiu MA (1977) Borate buffer equilibria in nickel refining electrolytes. J Appl Electrochem 7:495–500

    Article  CAS  Google Scholar 

  17. Berger R, Bexell U, Grehk TM, Hörnström SE (2007) A comparative study of the corrosion protective properties of chromium and chromium free passivation methods. Surf Coat Tech 202:391–397

    Article  CAS  Google Scholar 

  18. Liu J, Guo Y, Huang W (2006) Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys. Surf Coat Tech 201:1536–1541

    Article  CAS  Google Scholar 

  19. Morales J, Fernandez GT, Esparza P, Gonzalez S, Salvarezza RC (1995) A comparative study on the passivation and localized corrosion of α, β, and α + β brass in borate buffer solutions containing sodium chloride-I. Electrochemical data. Corros Sci 37:211–229

    Article  CAS  Google Scholar 

  20. Nayana KO, Venkatesha TV, Chandrappa KG (2013) Influence of additive on nanocrystalline, bright Zn-Fe alloy electrodeposition and its properties. Surf Coat Tech 235:461–468

    Article  CAS  Google Scholar 

  21. Shi Z, Liu M, Atrens A (2010) Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corro Sci 52:579–588

    Article  CAS  Google Scholar 

  22. Mohammadi S, Taromi FA, Shariatpanahi H, Neshati J, Hemmati M (2014) Electrochemical and anticorrosion behavior of functionalized graphite nanoplatelets epoxy coating. J Ind Eng Chem 20:4124–4139

    Article  CAS  Google Scholar 

  23. Schneider M, Kremmer K, Lämmel C, Sempf K, Herrmann M (2014) Galvanic corrosion of metal/ceramic coupling. Corros Sci 80:191–196

    Article  CAS  Google Scholar 

  24. Agarwal S, Curtin J, Duffy B, Jaiswal S (2016) Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mat Sci Eng C 68:948–963

  25. Sun WY, Su SJ, Wang QY, Ding SL (2013) Lab-scale circulation process of electrolytic manganese production with low-grade pyrolusite leaching by SO2. Hydrometallurgy 133:118–125

    Article  CAS  Google Scholar 

  26. Deng FY, Li SB, Jiang SQ, Zhang FE, Wang K (2010) Method for measuring content of boron element contained in aluminium-titanium-boron alloy. Chinese patent (CN) 101813620 A:1–10

  27. Rudnik E (2015) Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions. J Electroanal Chem 741:20–31

    Article  CAS  Google Scholar 

  28. Parys HV, Telias G, Nedashkivskyi V (2010) On the modeling of electrochemical systems with simultaneous gas evolution. Case study: the zinc deposition mechanism. Electrochim Acta 55:5709–5718

    Article  Google Scholar 

  29. Neumair SC, Perfler L, Huppertz H (2014) Synthesis and characterization of the manganese borate α-MnB2O4. Z Naturforsch B 66:882–888

    Article  Google Scholar 

  30. Lu J, Yang QH, Zhang Z (2010) Effects of additives on nickel electrowinning from sulfate system. T Nonferr Metal Soc China 20:97–101

    Article  CAS  Google Scholar 

  31. Raeissi K, Golozar MA, Szpunar JA, Tufani A, Saatchi A (2008) Texture and surface morphology development in zinc and zinc-cobalt electrodeposits. J Electrochem Soc 155:783–790

    Article  Google Scholar 

  32. Pourbaix M (1997) Atlas of electrochemical equilibriam in aqueous solutions. NACE International Cebeleor 56:562–567

    Google Scholar 

  33. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. Marcel Dekker, New York

    Google Scholar 

  34. Lupi C, Pasquali M, Era AD (2006) Studies concerning nickel electrowinning from acidic and alkaline electrolytes. Miner Eng 19:1246–1250

    Article  CAS  Google Scholar 

  35. Zech N, Landolt D (2000) The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes. Electrochim Acta 45:3461–3471

    Article  CAS  Google Scholar 

  36. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  37. Tilak BVKSRA, Rajagopalan SR, Reddy AKN (1962) Buffer characteristics of manganous sulphate + ammonium sulphate electrodeposition baths. Trans Faraday Soc 58:795–804

    Article  CAS  Google Scholar 

  38. Hammouti B, Dafali A, Touzani R, Bouachrine M (2012) Inhibition of copper corrosion by bipyrazole compound in aerated 3 % NaCl. J Saudi Chem Soc 16:413–418

    Article  CAS  Google Scholar 

  39. Zhang E, Chen H, Shen F (2010) Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci Mater Med 21:2151–2163

    Article  CAS  Google Scholar 

  40. Song S, Song GL, Shen W, Liu M (2012) Corrosion and electrochemical evaluation of coated magnesium alloys. Corros J Sci Eng 68:015005–015011

    Google Scholar 

  41. Gu KM, Lv LY, Lu ZL, Yang HP, Mao F, Tang JN (2013) Electrochemical corrosion and impedance study of SAE1045 steel under gel-like environment. Corro Sci 74:408–413

    Article  CAS  Google Scholar 

  42. Poursaee A (2010) Potentiostatic transient technique, a simple approach to estimate the corrosion current density and stern-Geary constant of reinforcing steel in concrete. Cement Concrete Res 40:1451–1458

    Article  CAS  Google Scholar 

  43. Cao ZL, Hibino M, Goda H (2013) Effect of nitrite ions on steel corrosion induced by chloride or sulfate ions. Int J Corro 2013:1–16

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (No. 21376273) and the National Science and Technology Support Program of China (No. 2015BAB17B01) for offering the research funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H . Zhong or S. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J.R., Zhong, H..., Wang, S. et al. Influence of tetraborate anions on manganese electrodeposition in an anion-exchange membrane electrolysis reactor. Ionics 23, 177–189 (2017). https://doi.org/10.1007/s11581-016-1793-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1793-z

Keywords

Navigation