Skip to main content

Advertisement

Log in

Hierarchical porous g-C3N4/reduced graphene oxide architecture as light-weight sulfur host material for high-performance lithium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High–energy density lithium-sulfur (Li-S) batteries suffer from short cycling lifespan, poor rate capability, and low sulfur utilization. Here we report design and synthesis of hierarchical porous g-C3N4/reduced graphene oxide (r-GO) as light-weight sulfur host material for Li-S batteries via a poly-condensation method using silica nanoparticles as hard templates. Microstructure of the g-C3N4/r-GO architecture has been characterized. Electrochemical evaluations indicate that the g-C3N4/r-GO/S composite cathode with 75 wt% of sulfur and moderate macropore density in the host material displays the best Li-storage properties. The reversible capacity reaches 589.6 mAh g−1 after 100 cycles at a current rate of 2 C (3.35 A g−1). Especially the rate capability is excellent. Even at 3.5 C, the reversible capacity can reach 55% of the capacity at 0.2 C. This light-weight g-C3N4/r-GO architecture composed of electrical conductive r-GO layers, polar g-C3N4, and hierarchical pores is a promising sulfur host material for high-performance Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miura A, Rosero-Navarro NC, Sakuda A, Tadanaga K, Phuc NH, Matsuda A, Machida N, Hayashi A, Tatsumisago M (2019) Nat Rev Chem:1

  2. Hu X, Li Y, Zeng G, Jia J, Zhan H, Wen Z (2018) Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2for lithium and sodium storage. ACS Nano 12(2):1592–1602

    PubMed  CAS  Google Scholar 

  3. Chen W, Lei T, Qian T, Lv W, He W, Wu C, Liu X, Liu J, Chen B, Yan C, Xiong J (2018) A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium-sulfur battery. Adv Energy Mater 8(12):1702889

    Google Scholar 

  4. Xu J, Zhang W, Chen Y, Fan H, Su D, Wang G (2018) MOF-derived porous N–Co3O4@N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries. J Mater Chem A 6(6):2797–2807

    CAS  Google Scholar 

  5. Zhao W, Ci S, Hu X, Chen J, Wen Z (2019) Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale 11(11):4688–4695

    PubMed  CAS  Google Scholar 

  6. Fan M, An Y, Yin H, Li W, Sun W, Lin Z (2018) Self-assembled reduced graphene oxide/sulfur composite encapsulated by polyaniline for enhanced electrochemistry performance. J Solid State Electrochem 22(3):667–675

    CAS  Google Scholar 

  7. Zhou G, Paek E, Hwang GS, Manthirammm A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50(26):5904–5908

    CAS  Google Scholar 

  9. Lu S, Cheng Y, Wu X, Liu J (2013) Significantly improved long-cycle stability in high-rate Li–S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett 13(6):2485–2489

    PubMed  CAS  Google Scholar 

  10. Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759

    PubMed  CAS  Google Scholar 

  11. Park MS, Yu JS, Kim KJ, Jeong G, Kim JH, Yim T, Jo YN, Hwang U, Kang S, Woo T, Kim H, Kim YJ (2013) Porous carbon spheres as a functional conducting framework for use in lithium–sulfur batteries. RSC Adv 3(29):11774–11781

    CAS  Google Scholar 

  12. Yi R, Liu C, Zhao Y, Hardwick LJ, Li Y, Geng X, Zhang Q, Yang L, Zhao C (2019) A light-weight free-standing graphene foam-based interlayer towards improved Li-S cells. Electrochim Acta 299:479–488

    CAS  Google Scholar 

  13. Liang S, Xia Y, Liang C, Gan Y, Huang H, Zhang J, Tao X, Sun W, Han W, Zhang W (2018) A green and facile strategy for the low-temperature and rapid synthesis of Li2S@PC–CNT cathodes with high Li2S content for advanced Li–S batteries. J Mater Chem A 6(21):9906–9914

    CAS  Google Scholar 

  14. Chen Y, Li X, Park KS, Hong J, Song J, Zhou L, Mai YW, Huang H, Goodenough JB (2014) Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithium–sulfur batteries. J Mater Chem A 2(26):10126–10130

    CAS  Google Scholar 

  15. Pei F, Lin L, Ou D, Zheng Z, Mo S, Fang X, Zheng N (2017) Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat Commun 8(1):482

    PubMed  PubMed Central  Google Scholar 

  16. Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63

    CAS  Google Scholar 

  17. Lu Y, Wang Y, Wang W, Guo Y, Zhang Y, Luo R, Liu X, Peng T (2019) Uniform honeycomb-like microspheres constructed with titanium nitride to confine polysulfides for extremely stable lithium-sulfur batteries. J Phys D Appl Phys 52(2):025502

    Google Scholar 

  18. Wang D, Fu A, Li H, Wang Y, Guo P, Liu J, Zhao XS (2015) Mesoporous carbon spheres with controlled porosity for high-performance lithium–sulfur batteries. J Power Sources 285:469–477

    CAS  Google Scholar 

  19. Pan H, Chen J, Cao R, Murugesan V, Rajput NN, Han KS, Persson K, Estevez L, Engelhard MH, Zhang JG, Mueller KT, Cui Y, Shao Y, Liu J (2017) Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat Energy 2(10):813–820

    CAS  Google Scholar 

  20. Pei F, An T, Zang J, Zhao X, Fang X, Zheng M, Dong Q, Zheng N (2016) From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S Batteries. Adv Energy Mater 6(8):1502539

    Google Scholar 

  21. Zhang FF, Huang G, Wang XX, Qin YL, Du XC, Yin DM, Liang F, Wang LM (2014) Sulfur-impregnated core-shell hierarchical porous carbon for lithium-sulfur batteries. Chem Eur J 20:17523–17529

    PubMed  CAS  Google Scholar 

  22. Liu Y, Cheng M, Guo X, Wu Z, Chen Y, Xiang W, Li J, Zhong B (2017) Synthesis and electrochemical performance of micro-mesoporous carbon-sulfur composite cathode for Li–S batteries. Ionics 23(11):2951–2960

    CAS  Google Scholar 

  23. Wu HL, Tang QL, Fan HN, Liu Z, Hu AP, Zhang SY, Deng WN, Chen XH (2017) Dual-confined and hierarchical-porous graphene/C/SiO2 hollow microspheres through spray drying approach for lithium-sulfur batteries. Electrochim Acta 255:179–186

    CAS  Google Scholar 

  24. Deng W, Ci S, Li H, Wen Z (2017) One-step ultrasonic spray route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries. Chem Eng J 330:995–1001

    CAS  Google Scholar 

  25. Zhang G, Liu H, Qu J, Li J (2016) Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ Sci 9(4):1190–1209

    CAS  Google Scholar 

  26. Li Z, He Q, Xu X, Zhao Y, Liu X, Zhou C, Xia L, Mai L (2018) A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv Mater 30(45):1804089

    Google Scholar 

  27. He F, Li K, Yin C, Ding Y, Tang H, Wang Y, Wu Z (2018) A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium–sulfur batteries. J Power Sources 373:31–39

    CAS  Google Scholar 

  28. Jun YS, Hong WH, Antonietti M, Thomas A (2009) Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv Mater 21(42):4270–4274

    CAS  Google Scholar 

  29. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18(41):4893–4908

    CAS  Google Scholar 

  30. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2008) Nat Mater 8(1):76–80

    PubMed  Google Scholar 

  31. Pang Q, Nazar LF (2016) Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10(4):4111–4118

    PubMed  CAS  Google Scholar 

  32. Liu J, Li W, Duan L, Li X, Ji L, Geng Z, Huang K, Lu L, Zhou L, Liu Z, Chen W, Liu L, Feng S, Chen W (2015) A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett 15(8):5137–5142

    PubMed  CAS  Google Scholar 

  33. Ciesielskiand A, Samorì P (2016) Supramolecular approaches to graphene: from self-assembly to molecule-assisted liquid-phase exfoliation. Adv Mater 28(29):6030–6051

    Google Scholar 

  34. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    CAS  Google Scholar 

  35. Xiang Z, Chen Y, Li J, Xia X, He Y, Liu H (2017) Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. J Solid State Electrochem 21(8):2425–2432

    CAS  Google Scholar 

  36. Bose S, Kuila T, Mishra AK, Kim NH, Lee JH (2012) Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 22(19):9696–9703

    CAS  Google Scholar 

  37. Zhao H, Yu H, Quan X, Chen S, Zhang Y, Zhao H, Wang H (2014) Appl Catal B 152:46–50

    Google Scholar 

  38. Liu P, Huang Y, Wang L (2013) A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Mater Lett 91:125–128

    CAS  Google Scholar 

  39. Seyyedin ST, Yaftian MR, Sovizi MR (2017) Cobalt oxyhydroxide/graphene oxide nanocomposite for amelioration of electrochemical performance of lithium/sulfur batteries. J Solid State Electrochem 21(3):649–656

    CAS  Google Scholar 

  40. Song MK, Zhang Y, Cairns EJ (2013) A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. Nano Lett 13(12):5891–5899

    PubMed  CAS  Google Scholar 

  41. Fu J, Chang B, Tian Y, Xi F, Dong X (2013) Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J Mater Chem A 1(9):3083–3090

    CAS  Google Scholar 

  42. Hou Y, Wen Z, Cui S, Guo X, Chen J (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25(43):6291–6297

    PubMed  CAS  Google Scholar 

  43. Zhou G, Yin LC, Wang DW, Li L, Pei S, Gentle IR, Li F, Cheng HM (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7(6):5367–5375

    PubMed  CAS  Google Scholar 

  44. Li J, Xue C, Xi B, Mao H, Qian Y, Xiong S (2018) Heteroatom dopings and hierarchical pores of graphene for synergistic improvement of lithium–sulfur battery performance. Inorg Chem Front 5(5):1053–1061

    CAS  Google Scholar 

  45. Tian Y, Sun Z, Zhang Y, Wang X, Bakenov Z, Yin F (2018) Micro-spherical sulfur/graphene oxide composite via spray drying for high performance lithium sulfur batteries. Nanomaterials 8(1):50

    PubMed Central  Google Scholar 

  46. Wang J, Meng Z, Yang W, Yan X, Guo R, Han WQ (2019) Facile synthesis of rGO/g-C3N4/CNT microspheres via an ethanol-assisted spray-drying method for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 11(1):819–827

    PubMed  CAS  Google Scholar 

  47. Li Z, Du Y, Zhu K, Meng A, Li Q (2018) Porous g-C3N4 with high pyridine N/sulfur composites as the cathode for high performance lithium-sulfur battery. Mater Lett 213:338–341

    CAS  Google Scholar 

  48. Ren J, Xia L, Zhou Y, Zheng Q, Liao J, Lin D (2018) A reduced graphene oxide/nitrogen, phosphorus doped porous carbon hybrid framework as sulfur host for high performance lithium-sulfur batteries. Carbon 140:30–40

    CAS  Google Scholar 

  49. Wang Y, Zhang Z, Zhu S, Sun D, Jin Y, App J (2017) Enteromorpha prolifera-derived carbon as a high-performance cathode material for lithium–sulfur batteries. Electrochem. 47(5):631–639

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (51472083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxi Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Wang, Q., Song, P. et al. Hierarchical porous g-C3N4/reduced graphene oxide architecture as light-weight sulfur host material for high-performance lithium-sulfur batteries. Ionics 25, 5361–5371 (2019). https://doi.org/10.1007/s11581-019-03119-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03119-w

Keywords

Navigation