Skip to main content

Advertisement

Log in

Capacitance performance of NiO thin films synthesized by direct and pulse potentiostatic methods

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Transition metal oxides have applications into energy storage devices such as electrochemical supercapacitors. We deposited nickel oxide (NiO) thin films using electrodeposition under direct and pulse potentiometry. The effects of the pulse electrodeposition conditions are systematically investigated. The results show that the pulse time influences clearly the morphology of thin films deposited. The nanostructure thin film that has been deposited under 1-s on-time condition was proven to be a suitable electrode material since its 1000 Fg−1 at 0.5 Ag−1 specific capacitance is large enough to fulfill the needed requirement. In addition, the thin film at hand has shown 90.1% capacity retention during 800 galvanostatic charge–discharge cycles under 5 Ag−1 current density. Moreover, nanostructured NiO films prepared with pulse electrodeposition method demonstrate high power performance, excellent rate as well as long-term cycling stability, which make them promising electrode materials for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gérardin K, Raël S, Bonnet C, Arora D, Lapicque F (2018) Direct coupling of PEM fuel cell to supercapacitors for higher durability and better energy management. Fuel Cells 18:315–325. https://doi.org/10.1002/fuce.201700041

    Article  CAS  Google Scholar 

  2. Zi-Bo Z, Ke-Jing H, Xu W (2018) Superior mixed Co-Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47:89–95. https://doi.org/10.1016/j.nanoen.2018.02.059

    Article  CAS  Google Scholar 

  3. Li S, Paul W, Kaiwu F, Zhang N (2018) Multi-objective component sizing for a battery-supercapacitor power supply considering the use of a power converter. Energy 142:436–446. https://doi.org/10.1016/j.energy.2017.10.051

    Article  Google Scholar 

  4. Cao S, Li B, Zhu R, Pang H (2019) Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem Eng J 355:602–623. https://doi.org/10.1016/j.cej.2018.08.184

    Article  CAS  Google Scholar 

  5. Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H (2017) Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A 5:8155–8186. https://doi.org/10.1039/c7ta02454a

    Article  CAS  Google Scholar 

  6. Xu Y, Li B, Zheng S, Wu P, Zhan J, Xue H, Xu Q, Pang H (2018) Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J Mater Chem A 6:22070–22076. https://doi.org/10.1039/C8TA03128B

    Article  CAS  Google Scholar 

  7. Sayah A, Habelhames F, Bahloul A, Nessark B, Bonnassieux Y, Tendelier D, Jouad ME (2018) Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J Electroanal Chem 818:26–34. https://doi.org/10.1016/j.jelechem.2018.04.016

    Article  CAS  Google Scholar 

  8. Deokate RJ, Kalubarme RS, Chan-Jin P, Lokhande CD (2017) Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach. Electrochim Acta 214:378–385. https://doi.org/10.1016/j.electacta.2016.12.034

    Article  CAS  Google Scholar 

  9. Cao P, Wang L, Xu Y, Fu Y, Ma X (2015) Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor. Electrochim Acta 157:359–368. https://doi.org/10.1016/j.electacta.2014.12.107

    Article  CAS  Google Scholar 

  10. Bahloul A, Nessark B, Briot E, Groult H, Mauger A, Zaghib K, Julien CM (2013) Polypyrrole-covered MnO2 as electrode material for supercapacitor. J Power Sources 240:267–272. https://doi.org/10.1016/j.jpowsour.2013.04.013

    Article  CAS  Google Scholar 

  11. Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. Adv Energy Mater 08:1703259. https://doi.org/10.1002/aenm.201703259

    Article  CAS  Google Scholar 

  12. Li B, Gu P, Feng Y, Zhang G, Huang K, Xue H, Pang H (2017) Ultrathin nickel–cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater 27:1605784. https://doi.org/10.1002/adfm.201605784

    Article  CAS  Google Scholar 

  13. Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H (2017) Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7:1602733. https://doi.org/10.1002/aenm.201602733

    Article  CAS  Google Scholar 

  14. Simon P, Gogotsi Y (2009) Materials for electrochemical capacitors. Nanosci Technol:320–329. https://doi.org/10.1142/9789814287005_0033

    Chapter  Google Scholar 

  15. Aghazadeh M, Ganjali MR (2017) Electrosynthesis of highly porous NiO nanostructure through pulse cathodic electrochemical deposition: heat-treatment (PCED-HT) method with excellent supercapacitive performance. J Mater Sci Mater Electron 28:8144–8154. https://doi.org/10.1007/s10854-017-6521-6

    Article  CAS  Google Scholar 

  16. Li Y, Xu Y, Yang W, Shen W, Xue H, Pang H (2018) MOF-derived metal oxide composites for advanced electrochemical energy storage. Small. 14:1704435. https://doi.org/10.1002/smll.201704435

    Article  CAS  Google Scholar 

  17. Lin J, Jia H, Liang H, Chen S, Cai Y, Qi J, Qu C, Cao J, Fei W, Feng J (2018) In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for high-performance supercapacitors. Adv Sci 5:1700687. https://doi.org/10.1002/advs.201700687

    Article  CAS  Google Scholar 

  18. Dubal DP, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2010) Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J Alloys Compd 492:26–30. https://doi.org/10.1016/j.jallcom.2009.11.149

    Article  CAS  Google Scholar 

  19. Oh SH, Nazar LF (2010) Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant. J Mater Chem 20:3834–3839. https://doi.org/10.1039/B926734D

    Article  CAS  Google Scholar 

  20. Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12:1690–1696. https://doi.org/10.1021/nl300173j

    Article  CAS  Google Scholar 

  21. Liu R, Jiang Z, Liu Q, Zhu X, Liu L, Nia L, Shen C (2015) Novel red blood cell shaped α-Fe 2 O 3 microstructures and FeO (OH) nanorods as high capacity supercapacitors. RSC Adv 5:91127–91133. https://doi.org/10.1039/C5RA14619D

    Article  CAS  Google Scholar 

  22. Wang Y, Xia Y (2006) Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim Acta 51:3223–3227. https://doi.org/10.1016/j.electacta.2005.09.013

    Article  CAS  Google Scholar 

  23. Jing M, Wang C, Hou H, Wu Z, Zhu Y, Yang Y, Jia X, Zhang Y, Ji X (2015) Ultrafine nickel oxide quantum dots embedded with few-layer exfoliative graphene for an asymmetric supercapacitor: enhanced capacitances by alternating voltage. J Power Sources 298:241–248. https://doi.org/10.1016/j.jpowsour.2015.08.039

    Article  CAS  Google Scholar 

  24. Koussi-Daouda S, Majerusa O, Schamingb D, Pauporté T (2016) Electrodeposition of NiO films and inverse opal organized layers from polar aprotic solvent-based electrolyte. Electrochim Acta 219:638–646. https://doi.org/10.1016/j.electacta.2016.10.074

    Article  CAS  Google Scholar 

  25. Nakaoka K, Ueyama J, Ogura K (2004) Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films. J Electroanal Chem 571:93–99. https://doi.org/10.1016/j.jelechem.2004.05.003

    Article  CAS  Google Scholar 

  26. Wu MS, Yang CH, Wang MJ (2008) Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques. Electrochim Acta 54:155–161. https://doi.org/10.1016/j.electacta.2008.08.027

    Article  CAS  Google Scholar 

  27. Zhao L, Su G, Liu W, Cao L, Wang J, Dong Z, Song M (2011) Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition. Appl Surf Sci 257:3974–3979. https://doi.org/10.1016/j.apsusc.2010.11.160

    Article  CAS  Google Scholar 

  28. Koussi-Daoud S, Pellegrin Y, Odobel F, Viana B, Pauporté T (2017) Electrodeposition of NiO films from various solvent electrolytic solutions for dye sensitized solar cell application, oxide-based materials and devices VIII. Int Soc Opt Photon 10105:1010526. https://doi.org/10.1117/12.2252251

    Article  Google Scholar 

  29. Ghalmi Y, Habelhames F, Sayah A, Bahloul A, Nessark B, Derbal-Habak H, Bonnassieux Y, Nunzi JM (2019) Enhancement of the capacitance properties and the photoelectrochemical performances of P3HT film by incorporation of nickel oxide nanoparticles. Ionics. 25:2903–2012. https://doi.org/10.1007/s11581-018-2781-2

    Article  Google Scholar 

  30. Peacor SD, Hibma T (1994) Reflection high-energy electron diffraction study of the growth of NiO and CoO thin films by molecular beam epitaxy. Surf Sci 301:11–18. https://doi.org/10.1016/0039-6028(94)91283-1

    Article  CAS  Google Scholar 

  31. Shen JX, Kief MT (1996) Exchange coupling between NiO and NiFe thin films. J Appl Phys 79:5008–5010. https://doi.org/10.1063/1.361556

    Article  CAS  Google Scholar 

  32. Wang Y, Qin QZ (2002) A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-ion batteries. J Electrochem Soc 149:A873–A878. https://doi.org/10.1149/1.1481715

    Article  CAS  Google Scholar 

  33. Fujii E, Tomozawa A, Torii H, Takayama R (1996) Preferred orientations of NiO films prepared by plasma-enhanced metalorganic chemical vapor deposition. Jpn J Appl Phys 35:L328.http://iopscience.iop.org/1347-4065/35/3A/L328–L330

    Article  CAS  Google Scholar 

  34. Lakhdari M, Habelhames F, Nessark B, Girtan M, Derbal-Habak H, Bonnassieux Y, Tondelier D, Nunzi JM (2018) Effects of pulsed electrodeposition parameters on the properties of zinc oxide thin-films to improve the photoelectrochemical and photoelectrodegradation efficiency. Eur Phys J Appl Phys 84:21102

    Article  Google Scholar 

  35. Lo IH, Wang JY, Huang KY, Huang JH, Kang WP (2016) Synthesis of Ni(OH)2nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors. J Power Sources 308:29–36. https://doi.org/10.1016/j.jpowsour.2016.01.041

    Article  CAS  Google Scholar 

  36. Wu MS, Huang YA, Yang CH, Jow JJ (2007) Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int J Hydrog Energy 32:4153–4159. https://doi.org/10.1016/j.ijhydene.2007.06.001

    Article  CAS  Google Scholar 

  37. Sonavanea AC, Inamdarab AI, Shindea PS, Deshmukhc HP, Patila RS, Patil PS (2010) Efficient electrochromic nickel oxide thin films by electrodeposition. J Alloys Compd 489:667–673. https://doi.org/10.1016/j.jallcom.2009.09.146

    Article  CAS  Google Scholar 

  38. Rodzi SZF, Mohd Y (2013) Electrochromic performance of NiO films in alkaline medium. Adv Mater Res 748:51–55. https://doi.org/10.4028/www.scientific.net/AMR.748.51

    Article  CAS  Google Scholar 

  39. Wu M, Yang C (2007) Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition. Appl Phys Lett 91:33109–33101. https://doi.org/10.1063/1.2759270

    Article  CAS  Google Scholar 

  40. Wu M, Huang Y, Jow J, Yang W, Hsieh C, Tsai H (2008) Anodically potentiostaticdeposition of flaky nickel oxide nanostructures and their electrochemical performances. Int J Hydrog Energy 33:2921–2926. https://doi.org/10.1016/j.ijhydene.2008.04.012

    Article  CAS  Google Scholar 

  41. Saghatforoush LA, Hasanzadeh M, Sanati S, Mehdizadeh R (2012) Ni(OH)2 and NiO nanostructures: synthesis, characterization andElectrochemical performance. Bull Kor Chem Soc 33:2613–2618. https://doi.org/10.5012/bkcs.2012.33.8.2613

    Article  CAS  Google Scholar 

  42. Gondal MA, Saleh TA, Drmosh QA (2012) Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl Surf Sci 258:6982–6986. https://doi.org/10.1016/j.apsusc.2012.03.147

    Article  CAS  Google Scholar 

  43. Shiri HM, Aghazadeh M (2012) Synthesis, characterization and electrochemical properties of capsule-like NiO Nanoparticles. J Electrochem Soc 159:E132–E138. https://doi.org/10.1149/2.106206jes

    Article  CAS  Google Scholar 

  44. Rahdar A, Aliahmad M, Azizi Y (2015) NiO nanoparticles: synthesis and characterization. JNS 5:145–151. https://doi.org/10.7508/JNS.2015.02.009

    Article  Google Scholar 

  45. Mondal M, Das B, Howli P, Das NS, Chattopadhyay KK (2018) Porosity-tuned NiO nanoflakes: effect of calcination temperature for high performing supercapacitor application. J Electroanal Chem 813:116–126. https://doi.org/10.1016/j.jelechem.2018.01.049

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Habelhames.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalmi, Y., Habelhames, F., Sayah, A. et al. Capacitance performance of NiO thin films synthesized by direct and pulse potentiostatic methods. Ionics 25, 6025–6033 (2019). https://doi.org/10.1007/s11581-019-03159-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03159-2

Keywords

Navigation