Skip to main content
Log in

Structural, optical, and electrochromic properties of rare earth material (CeO2)/transitional metal oxide (WO3) thin film composite structure for electrochromic applications

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, cerium oxide nanorods were grown on fluorine-doped tin oxide substrates by the hydrothermal process with growth fluid concentrations from 0.06 to 0.09 M and maintaining the urea content constant at 0.5 M. Optimized tungsten oxide thin films were deposited on these hydrothermally grown cerium oxide nanorods by using DC sputtering process. The developed tungsten oxide-cerium oxide nanostructured hybrid films were characterized for their structural, morphological, optical, and electrochromic (EC) properties, by using various analytical techniques. It was observed that with the increase of growth fluid concentration, the cerium oxide nanorods (CeO2 NRs) become thinner and longer and decrement in transmittance. The highest diffusion coefficient (8.07 ×10−14 cm2/s) in the hybrid films formed with 0.08 M, and the highest coloration efficiency (13.88 cm2/C) in 0.06 M growth fluid concentrations was observed. The influence of CeO2 NRs on WO3 electrochemical performance observed in this study definitely helps in the selection of proper doping components and concentrations for power-saving optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Kamalisarvestani M, Saidur R, Mekhilef S, Javadi FS (2013) Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew Sustain Energy Rev 26:353–364. https://doi.org/10.1016/j.rser.2013.05.038

    Article  CAS  Google Scholar 

  2. Wang K, Wu H, Meng Y et al (2012) Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ Sci 5:8384–8389. https://doi.org/10.1039/c2ee21643d

    Article  CAS  Google Scholar 

  3. Azevedo CF, Balboni RDC, Cholant CM et al (2017) New thin films of NiO doped with V2O5 for electrochromic applications. J Phys Chem Solids 110:30–35. https://doi.org/10.1016/j.jpcs.2017.05.021

    Article  CAS  Google Scholar 

  4. Gupta J, Shaik H, Kumar KN (2021) A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics (Kiel) 27:2307–2334. https://doi.org/10.1007/s11581-021-04035-8

    Article  CAS  Google Scholar 

  5. Gutpa J, Shaik H, Naveen Kumar K, Sattar SA (2022) PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: a review. Mater Sci Semicond Process 143:106534. https://doi.org/10.1016/j.mssp.2022.106534

    Article  CAS  Google Scholar 

  6. Adhikari S, Song YY, Wang YM et al (2015) Electrochemical protonation/de-protonation of titania nanotubes decorated with silver phosphate crystals: an enhanced electrochromic color contrast. Opt Mater (Amst) 40:112–117. https://doi.org/10.1016/j.optmat.2014.12.004

    Article  CAS  Google Scholar 

  7. Kumar KN, Shaik H, Gupta J et al (2022) Sputter deposited tungsten oxide thin films and nanopillars: electrochromic perspective. Mater Chem Phys 278:125706. https://doi.org/10.1016/j.matchemphys.2022.125706

    Article  CAS  Google Scholar 

  8. Naveen Kumar K, Nithya G, Shaik H et al (2022) Simulation and fabrication of tungsten oxide thin films for electrochromic applications. Phys B Condens Matter 640:413932. https://doi.org/10.1016/j.physb.2022.413932

    Article  CAS  Google Scholar 

  9. Yin Y, Lan C, Hu S, Li C (2018) Effect of Gd-doping on electrochromic properties of sputter deposited WO3 films. J Alloys Compd 739:623–631. https://doi.org/10.1016/j.jallcom.2017.12.290

    Article  CAS  Google Scholar 

  10. Naveen Kumar K, Shaik H, Chandrashekar LN et al (2021) On ion transport during the electrochemical reaction on plane and GLAD deposited WO3 thin films. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2021.11.113

  11. Kumar KN, Nithya G, Shaik H et al (2023) Optical and electrochromic properties of DC magnetron sputter deposited tungsten oxide thin films at different electrolyte concentrations and vertex potentials for smart window applications. J Mater Sci Mater Electron 789. https://doi.org/10.1007/s10854-023-10180-9

  12. Liang Z, Zhao L, Meng W et al (2017) Tungsten-doped vanadium dioxide thin films as smart windows with self-cleaning and energy-saving functions. J Alloys Compd 694:124–131. https://doi.org/10.1016/j.jallcom.2016.09.315

    Article  CAS  Google Scholar 

  13. Tang CJ, Ye JM, Yang YT, He JL (2016) Large-area flexible monolithic ITO/WO3/Nb2O5/NiVOχ/ITO electrochromic devices prepared by using magnetron sputter deposition. Opt Mater (Amst) 55:83–89. https://doi.org/10.1016/j.optmat.2016.03.021

    Article  CAS  Google Scholar 

  14. Kostis I, Vasilopoulou M, Soultati A et al (2013) Highly porous tungsten oxides for electrochromic applications. Microelectron Eng 111:149–153. https://doi.org/10.1016/j.mee.2013.03.039

    Article  CAS  Google Scholar 

  15. Naveen Kumar K, Shaik H, Pawar A et al (2021) Effect of annealing and oxygen partial pressure on the RF sputtered WO3 thin films for electrochromic applications. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.11.185

  16. Ulrich S, Szyszko C, Jung S, Vergöhl M (2017) Electrochromic properties of mixed oxides based on titanium and niobium for smart window applications. Surf Coatings Technol 314:41–44. https://doi.org/10.1016/j.surfcoat.2016.11.078

    Article  CAS  Google Scholar 

  17. Chen Z, Xiao A, Chen Y et al (2013) Highly porous nickel oxide thin films prepared by a hydrothermal synthesis method for electrochromic application. J Phys Chem Solids 74:1522–1526. https://doi.org/10.1016/j.jpcs.2013.05.015

    Article  CAS  Google Scholar 

  18. Buch VR, Chawla AK, Rawal SK (2016) Review on electrochromic property for WO3 thin films using different deposition techniques. Mater Today Proc 3:1429–1437. https://doi.org/10.1016/j.matpr.2016.04.025

    Article  Google Scholar 

  19. Gupta J, Shaik H, Kumar KN et al (2022) Optimization of deposition rate for E-beam fabricated tungsten oxide thin films towards profound electrochromic applications. Appl Phys A Mater Sci Process 128:1–15. https://doi.org/10.1007/s00339-022-05609-7

    Article  CAS  Google Scholar 

  20. Ashok Reddy GV, Shaik H, Naveen Kumar K et al (2022) Thickness dependent tungsten trioxide thin films deposited using DC magnetron sputtering for electrochromic applications. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.11.134

  21. Ashok Reddy GV, Kumar KN, Shetty HD et al (2023) Materials today: proceedings comparison study of WO3 thin film and nanorods for smart window applications. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.052

  22. Mukherjee R, Sahay PP (2016) Improved electrochromic performance in sprayed WO3 thin films upon Sb doping. J Alloys Compd 660:336–341. https://doi.org/10.1016/j.jallcom.2015.11.138

    Article  CAS  Google Scholar 

  23. Naveen Kumar K, Shaik H, Sathish et al (2020) On the bonding and electrochemical performance of sputter deposited WO3 thin films. IOP Conf Ser Mater Sci Eng 872. https://doi.org/10.1088/1757-899X/872/1/012147

  24. Madhavi V, Kondaiah P, Shaik H et al (2021) Fabrication of porous 1D WO3 NRs and WO3/BiVO4 hetero junction photoanode for efficient photoelectrochemical water splitting. Mater Chem Phys 274:125095. https://doi.org/10.1016/j.matchemphys.2021.125095

    Article  CAS  Google Scholar 

  25. Koubli E, Tsakanikas S, Leftheriotis G et al (2015) Optical properties and stability of near-optimum WO3/Ag/WO3 multilayers for electrochromic applications. Solid State Ion 272:30–38. https://doi.org/10.1016/j.ssi.2014.12.015

    Article  CAS  Google Scholar 

  26. Ahmadi E, Ng CY, Razak KA, Lockman Z (2017) Preparation of anodic nanoporous WO3 film using oxalic acid as electrolyte. Elsevier B.V

    Book  Google Scholar 

  27. Green SV, Pehlivan E, Granqvist CG, Niklasson GA (2012) Electrochromism in sputter deposited nickel-containing tungsten oxide films. Sol Energy Mater Sol Cells 99:339–344. https://doi.org/10.1016/j.solmat.2011.12.025

    Article  CAS  Google Scholar 

  28. Cazzanelli E, Castriota M, Kalendarev R et al (2003) Sputtering deposition and characterization of Ru-doped WO3 thin films for electrochromic applications. Ionics (Kiel) 9:95–102. https://doi.org/10.1007/BF02376544

    Article  CAS  Google Scholar 

  29. Cai GF, Zhou D, Xiong QQ et al (2013) Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Sol Energy Mater Sol Cells 117:231–238. https://doi.org/10.1016/j.solmat.2013.05.049

    Article  CAS  Google Scholar 

  30. Kalidindi NR, Manciu FS, Ramana CV (2011) Crystal structure, phase, and electrical conductivity of nanocrystalline W0.95Ti0.05O3 thin films. ACS Appl Mater Interface 3:863–868. https://doi.org/10.1021/am101209d

    Article  CAS  Google Scholar 

  31. Zayim EO (2005) Optical and electrochromic properties of sol-gel made anti-reflective WO3-TiO2 films. Sol Energy Mater Sol Cells 87:695–703. https://doi.org/10.1016/j.solmat.2004.06.017

    Article  CAS  Google Scholar 

  32. Patil PS, Mujawar SH, Inamdar AI, Sadale SB (2005) Electrochromic properties of spray deposited TiO2-doped WO3 thin films. Appl Surf Sci 250:117–123. https://doi.org/10.1016/j.apsusc.2004.12.042

    Article  CAS  Google Scholar 

  33. Xu J, Shi S, Zhang X et al (2013) Structural and optical properties of (Al, K)-co-doped ZnO thin films deposited by a sol-gel technique. Mater Sci Semicond Process 16:732–737. https://doi.org/10.1016/j.mssp.2012.12.016

    Article  CAS  Google Scholar 

  34. Ramkumar S, Rajarajan G (2016) Effect of Fe doping on structural, optical and photocatalytic activity of WO3 nanostructured thin films. J Mater Sci Mater Electron 27:1847–1853. https://doi.org/10.1007/s10854-015-3963-6

    Article  CAS  Google Scholar 

  35. De León JMOR, Acosta DR, Pal U, Castañeda L (2011) Improving electrochromic behavior of spray pyrolised WO3 thin solid films by Mo doping. Electrochim Acta 56:2599–2605. https://doi.org/10.1016/j.electacta.2010.11.038

    Article  CAS  Google Scholar 

  36. Gesheva KA, Ivanova T, Kozlov M, Boyadzhiev S (2010) Atmospheric pressure chemical vapour deposition of electrochromic Mo-W thin oxide films: structural, optoelectronic and vibration properties. J Cryst Growth 312:1188–1192. https://doi.org/10.1016/j.jcrysgro.2010.01.001

    Article  CAS  Google Scholar 

  37. Xu J, Ao Y, Fu D, Yuan C (2009) Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity. Colloids Surf A Physicochem Eng Asp 334:107–111. https://doi.org/10.1016/j.colsurfa.2008.10.017

    Article  CAS  Google Scholar 

  38. Liu Y, Li J, Li W et al (2015) Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. J Phys Chem C 119:14834–14842. https://doi.org/10.1021/acs.jpcc.5b00966

    Article  CAS  Google Scholar 

  39. Ashok Reddy GV, Shaik H, Kumar KN et al (2023) Structural and electrochemical studies of WO3 coated TiO2 nanorod hybrid thin films for electrochromic applications. Optik (Stuttg) 277:170694. https://doi.org/10.1016/j.ijleo.2023.170694

    Article  CAS  Google Scholar 

  40. Sathish SH, Kumar KN et al (2021) ZnO:Al thin films from (Al2O3)x(ZnO)(1-x) powder targets by magnetron sputtering. Ceram Int 47:14997–15004. https://doi.org/10.1016/j.ceramint.2021.02.037

    Article  CAS  Google Scholar 

  41. Song J, Wang L, Xu N, Zhang Q (2010) Microwave electromagnetic and absorbing properties of Dy3+ doped MnZn ferrites. J Rare Earths 28:451–455. https://doi.org/10.1016/S1002-0721(09)60132-0

    Article  CAS  Google Scholar 

  42. Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578. https://doi.org/10.1038/nnano.2010.132

    Article  CAS  PubMed  Google Scholar 

  43. Yadav AA, Hunge YM, Kang SW (2021) Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf Interface 24:101075. https://doi.org/10.1016/j.surfin.2021.101075

    Article  CAS  Google Scholar 

  44. Yadav AA, Hunge YM, Kang SW (2022) Visible light-responsive CeO2/MoS2 composite for photocatalytic hydrogen production. Catalysts 12:1–11. https://doi.org/10.3390/catal12101185

    Article  CAS  Google Scholar 

  45. Hunge YM, Yadav AA, Mohite BM et al (2018) Photoelectrocatalytic degradation of sugarcane factory wastewater using WO3/ZnO thin films. J Mater Sci Mater Electron 29:3808–3816. https://doi.org/10.1007/s10854-017-8316-1

    Article  CAS  Google Scholar 

  46. Rachel Malini D, Sanjeeviraja C (2013) H+ - iintercalation electrochemical/electrochromic properties of V-Ce mixed oxide thin films. Int J Electrochem Sci 8:1349–1365

    Article  CAS  Google Scholar 

  47. Yin Y, Lan C, Guo H, Li C (2016) Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices. ACS Appl Mater Interfaces 8:3861–3867. https://doi.org/10.1021/acsami.5b10665

    Article  CAS  PubMed  Google Scholar 

  48. Zheng SY, Andersson-Fäldt AM, Stjerna B, Granqvist CG (1993) Optical properties of sputter-deposited cerium oxyfluoride thin films. Appl Opt 32(31):6303–6309. https://doi.org/10.1364/AO.32.006303

  49. Masetti E, Varsano F, Decker F (1999) Sputter-deposited cerium vanadium mixed oxide as counter- electrode for electrochromic devices. 44:3117–3119

  50. Avellaneda CO, Berton MAC, Bulhões LOS (2008) Optical and electrochemical properties of CeO2 thin film prepared by an alkoxide route. Sol Energy Mater Sol Cells 92:240–244. https://doi.org/10.1016/j.solmat.2007.03.035

    Article  CAS  Google Scholar 

  51. Pawlicka A, Sentanin F, Firmino A et al (2011) Ionically conducting DNA-based membranes for eletrochromic devices. 161:2329–2334. https://doi.org/10.1016/j.synthmet.2011.08.043

  52. Avellaneda O, Bulho LOS (2005) The CeO2–TiO2–ZrO2 sol–gel film: a counter-electrode for electrochromic devices. 471:100–104. https://doi.org/10.1016/j.tsf.2004.04.039

  53. Ji Z, Wang X, Zhang H et al (2012) Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6:5366–5380. https://doi.org/10.1021/nn3012114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho YJ, Jang H, Lee KS, Kim DR (2015) Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance. Appl Surf Sci 340:96–101. https://doi.org/10.1016/j.apsusc.2015.02.138

    Article  CAS  Google Scholar 

  55. Channei D, Chansaenpak K, Phanichphant S et al (2021) Synthesis and characterization of WO3/CeO2 heterostructured nanoparticles for photodegradation of indigo carmine dye. https://doi.org/10.1021/acsomega.1c02453

  56. Siva Prakash R, Mahendran C, Chandrasekaran J et al (2020) Impact of substrate temperature on the properties of rare-earth cerium oxide thin films and electrical performance of p-Si/n-CeO2 junction Diode. J Inorg Organomet Polym Mater 30:5193–5208. https://doi.org/10.1007/s10904-020-01667-7

    Article  CAS  Google Scholar 

  57. Saini M, Dehiya BS, Umar A (2020) VO2(M)@CeO2 core-shell nanospheres for thermochromic smart windows and photocatalytic applications. Ceram Int 46:986–995. https://doi.org/10.1016/j.ceramint.2019.09.062

    Article  CAS  Google Scholar 

  58. Kumar Singh A, Chen PW, Wuu DS (2021) Growth and characterization of co-sputtered Al-doped ZnGa2O4 films for enhancing deep-ultraviolet photoresponse. Appl Surf Sci 566:150714. https://doi.org/10.1016/j.apsusc.2021.150714

    Article  CAS  Google Scholar 

  59. Singh AK, Yen CC, Wuu DS (2022) Structural and photodetector characteristics of Zn and Al incorporated ZnGa2O4 films via co-sputtering. Results Phys 33:105206. https://doi.org/10.1016/j.rinp.2022.105206

    Article  Google Scholar 

  60. Patel KJ, Bhatt GG, Patel SS et al (2017) Thickness-dependent electrochromic properties of amorphous tungsten trioxide thin films. J Nano-Electron Phys 9. https://doi.org/10.21272/jnep.9(3).03040

  61. Hsu CS, Chan CC, Huang HT et al (2008) Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Films 516:4839–4844. https://doi.org/10.1016/j.tsf.2007.09.019

    Article  CAS  Google Scholar 

  62. Sun X, Liu Z, Cao H (2011) Electrochromic properties of N-doped tungsten oxide thin films prepared by reactive DC-pulsed sputtering. Thin Solid Films 519:3032–3036. https://doi.org/10.1016/j.tsf.2010.12.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Researchers Supporting Project number (RSP2023R169), King Saud University, Riyadh, Saudi Arabia for the financial support.

Funding

The authors thank the Nitte Meenakshi Institute of Technology, Bengaluru, India for providing a seed money grant.

Author information

Authors and Affiliations

Authors

Contributions

Ashok Reddy G V: investigation, methodology, and validation

K Naveen Kumar: conceptualization and methodology,

Sheik Abdul Sattar, Nunna Guru Prakash, Daruka Prasad B, Merum Dhananjaya, G Ranjith Kumar, H S Yogananda, Shirajahammad M Hunagund, and Sabah Ansar: investigation, methodology, and validation

Corresponding authors

Correspondence to G V Ashok Reddy or Sheik Abdul Sattar.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok Reddy, G.V., Kumar, K.N., Sattar, S.A. et al. Structural, optical, and electrochromic properties of rare earth material (CeO2)/transitional metal oxide (WO3) thin film composite structure for electrochromic applications. Ionics 29, 3731–3742 (2023). https://doi.org/10.1007/s11581-023-05078-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05078-9

Keywords

Navigation