Skip to main content

Advertisement

Log in

The evolving roles of geophysical test sites in engineering, science and technology

  • Review Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Understanding the anomalies generated by various subsurface targets and their responses to different geophysical techniques in various subsoil types is critical to near-surface geophysical investigations. Geophysical test site (GTS) plays a vital role in near-surface geophysical investigations and related Earth sciences to adequately predict the geometries and anomalies generated by the subsurface targets. Therefore, developing a GTS on a site requires some technical efficiencies, mechanical procedures, engineering concepts and scientific approach, depending on the operating environment and the purpose of construction. This paper reviews the evolving roles of GTS in engineering, sciences, and technology via remarkable pedagogical and scientific research. The procedures for designing and installing GTS were also discussed. Every constructed GTS is unique and has its operating environment and sets of scientific requirements. As a result, the execution of GTS should be subjected to numerous factors that invariably affect the overall long time usage and performance. Comparative studies of GTS activities indicate that GTS is a vital geophysical research and academic platform to enrich the outcomes of the geophysical modelling for near-surface geophysical applications in engineering, science and technology. The evolving application of GTS has greatly impacted the field of science and engineering by enhancing the knowledge and understanding of the earth’s interior, which invariably affects the engineers, geophysicists, archaeologists and geologists to be critical in the analysis, interpretation, and providing precise and accurate information of subsurface anomalies underlying the uppermost soil of the earth’s crust. After a critical investigation, it was noted that the installation of GTSs is usually conceived to replicate situations often encountered in field investigation contexts. Examination shows that GTS can provide an ideal platform for young geoscientists, engineers and archaeologists to acquire the requisite skills, knowledge, technical know-how, and professional techniques for resolving near-surface challenges in real-life work situations. More also, a well-developed and equipped GTS could be a watershed in technological advancement, research development, and new scientific ideas. The GTS platform also indicates a promising pedagogical approach to geophysical educational usage, research mobilization, and development of new shallow geophysical techniques for various near-surface investigation and calibrating/testing geophysical equipment, which invariably catalyzed engineering designs, scientific concepts and technological advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Omeiza Alao.

Ethics declarations

Conflict of interest

No conflict of interest in this research work.

Additional information

Edited by Prof. Jadwiga Anna Jarzyna (ASSOCIATE EDITOR) / Prof. Gabriela Fernández Viejo (CO-EDITOR-IN-CHIEF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alao, J.O., Lawal, K.M., Dewu, B.B.M. et al. The evolving roles of geophysical test sites in engineering, science and technology. Acta Geophys. 72, 161–176 (2024). https://doi.org/10.1007/s11600-023-01096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01096-3

Keywords

Navigation