Skip to main content
Log in

A Comprehensive Review on Multi-Dimensional Heat Conduction of Multi-Layer and Composite Structures: Analytical Solutions

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Heat conduction in multi-layer and composite materials is one of the fundamental heat transfer problems in many industrial applications. Due to different materials types, interface conditions, and various geometries of these laminates, the heat conduction mechanism is more complicated than that of one-layer isotropic media. Analytical solutions are the best ways to study and understand such problems in depth. In this study, different existing analytical solutions for heat conduction in multi-layer and composite materials are reviewed and classified in rectangular, cylindrical, spherical, and conical coordinates. Applied boundary conditions, internal heat source, and thermal contact resistance as the most critical parameters in the solution complexity investigated in the literature, are discussed and summarized in different tables. Various types of multi-layer structures such as isotropic, anisotropic, orthotropic, and reinforced laminates are included in this study. It is found that although more than half a century has passed since the beginning of the research on heat transfer in multi-layer composites, new researches that can help with a better understanding in this area are still being offered. The challenges and shortcomings in this area are also discussed to guide future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiri Delouei A., Kayhani M., Norouzi M., Exact analytical solution of unsteady axi-symmetric conductive heat transfer in cylindrical orthotropic composite laminates. International Journal of Heat and Mass Transfer, 2012, 55(15-16): 4427–4436.

    Article  Google Scholar 

  2. Haji-sheikh A., Beck J., Green’s function partitioning in Galerkin-based integral solution of the diffusion equation. Journal of Heat Transfer, 1990, 112(1): 28–34.

    Article  ADS  Google Scholar 

  3. Fredman T., An analytical solution method for composite layer diffusion problems with an application in metallurgy. Heat and Mass Transfer, 2003, 39(4): 285–295.

    Article  Google Scholar 

  4. Chu J.Y., Lee K.H., Kim A.R., Yoo D.J., Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide. Journal of Membrane Science, 2020, 611: 118385.

    Article  Google Scholar 

  5. Lv X., Chen H., Zhou W., Cheng F., Li S.D., Shao Z., Direct-methane solid oxide fuel cells with an in situ formed Ni-Fe alloy composite catalyst layer over Ni-YSZ anodes. Renewable Energy, 2020, 150: 334–341.

    Article  Google Scholar 

  6. Ding H., Hu R., Zhang P., Le C., Load bearing behaviors of composite bucket foundations for offshore wind turbines on layered soil under combined loading. Ocean Engineering, 2020, 198: 106997.

    Article  Google Scholar 

  7. Zhang P., Liang D., Ding H., Le C., Zhao X., Floating state of a one-step integrated transportation vessel with two composite bucket foundations and offshore wind turbines. Journal of Marine Science and Engineering, 2019, 7(8): 263.

    Article  Google Scholar 

  8. Wang H., Liu C., Analytical solution of two-dimensional transient heat conduction in fiber-reinforced cylindrical composites. International Journal of Thermal Sciences, 2013, 69: 43–52.

    Article  Google Scholar 

  9. Erol S., François B., Multilayer analytical model for vertical ground heat exchanger with groundwater flow. Geothermics, 2018, 71: 294–305.

    Article  Google Scholar 

  10. Li M., Lai A.C., Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation. Applied Energy, 2013, 104: 510–516.

    Article  Google Scholar 

  11. Xia Y., Jacobi A., An exact solution to steady heat conduction in a two-dimensional slab on a one-dimensional fin: application to frosted heat exchangers. International Journal of Heat and Mass Transfer, 2004, 47(14-16): 3317–3326.

    Article  MATH  Google Scholar 

  12. Li M., Lai A.C., New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory. Energy, 2012, 38(1): 255–263.

    Article  Google Scholar 

  13. Zubair S.M., Arif A., Sharqawy M.H., Thermal analysis and optimization of orthotropic pin fins: a closed-form analytical solution. Journal of Heat Transfer, 2010, 132(3): 031301.

    Article  Google Scholar 

  14. Becker S.M., Herwig H., One dimensional transient heat conduction in segmented fin-like geometries with distinct discrete peripheral convection. International Journal of Thermal Sciences, 2013, 71: 148–162.

    Article  Google Scholar 

  15. Norouzi M., Rahmani H., Birjandi A.K., Joneidi A.A., A general exact analytical solution for anisotropic non-axisymmetric heat conduction in composite cylindrical shells. International Journal of Heat and Mass Transfer, 2016, 93: 41–56.

    Article  Google Scholar 

  16. Wei G., Zhang X., Yu F., Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material. Journal of Thermal Science, 2009, 18(2): 142–149.

    Article  ADS  Google Scholar 

  17. De Monte F., Unsteady heat conduction in two-dimensional two slab-shaped regions. Exact closed-form solution and results. International Journal of Heat and Mass Transfer, 2003, 46(8): 1455–1469.

    Article  MATH  Google Scholar 

  18. Stadler Z., Krnel K., Kosmac T., Friction and wear of sintered metallic brake linings on a C/C-SiC composite brake disc. Wear, 2008, 265(3-4): 278–285.

    Article  Google Scholar 

  19. Olivé-Monllau R., Esplandiu M.J., Bartrolí J., Baeza M., Céspedes F., Strategies for the optimization of carbon nanotube/polymer ratio in composite materials: applications as voltammetric sensors. Sensors and Actuators B: Chemical, 2010, 146(1): 353–360.

    Article  Google Scholar 

  20. Geer J., Desai A., Sammakia B., Heat conduction in multilayered rectangular domains. Journal of Electronic Packaging, 2007, 129(4): 440–451.

    Article  Google Scholar 

  21. Ashraf M.U., Qasim M., Wakif A., Afridi M.I., Animasaun I.L., A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood-based nanofluid containing magnetite nanoparticles: A physiological application. Numerical Methods for Partial Differential Equations, 1904. J. Therm. Sci., Vol.30, No.6, 2021 2020. DOI: https://doi.org/10.1002/num.22676.

    Google Scholar 

  22. Wakif A., Sehaqui R., Generalized differential quadrature scrutinization of an advanced MHD stability problem concerned water - based nanofluids with metal/metal oxide nanomaterials: A proper application of the revised two-phase nanofluid model with convective heating and through-flow boundary conditions. Numerical Methods for Partial Differential Equations, 2020. DOI: https://doi.org/10.1002/num.22671.

  23. Wakif A., Chamkha A., Animasaun I., Zaydan M., Waqas H., Sehaqui R., Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation. Arabian Journal for Science and Engineering, 2020, 45(11): 9423–9438.

    Article  Google Scholar 

  24. Qasim M., Ali Z., Wakif A., Boulahia Z., Numerical simulation of MHD peristaltic flow with variable electrical conductivity and Joule dissipation using generalized differential quadrature method. Communications in Theoretical Physics, 2019, 71(5): 509.

    Article  MathSciNet  ADS  Google Scholar 

  25. Wakif A., Qasim M., Afridi M.I., Saleem S., Al-Qarni M., Numerical examination of the entropic energy harvesting in a magnetohydrodynamic dissipative flow of Stokes’ second problem: utilization of the gear-generalized differential quadrature method. Journal of Non-Equilibrium Thermodynamics, 2019, 44(4): 385–403.

    Article  ADS  Google Scholar 

  26. Gu Y., O’neal D., An analytical solution to transient heat conduction in a composite region with a cylindrical heat source. Journal of Solar Energy Engineering, 1995, 117(3): 242–248.

    Article  Google Scholar 

  27. Haji-Sheikh A., Beck J., Agonafer D., Steady-state heat conduction in multi-layer bodies. International Journal of Heat and Mass Transfer, 2003, 46(13): 2363–2379.

    Article  MATH  Google Scholar 

  28. Lu X., Tervola P., Viljanen M., Transient analytical solution to heat conduction in composite circular cylinder. International Journal of Heat and Mass Transfer, 2006, 49(1-2): 341–348.

    Article  MATH  Google Scholar 

  29. Lu X., Tervola P., Viljanen M., Transient analytical solution to heat conduction in multi-dimensional composite cylinder slab. International Journal of Heat and Mass Transfer, 2006, 49(5-6): 1107–1114.

    Article  MATH  Google Scholar 

  30. Hahn D.W., Özisik M.N., Heat conduction, third ed., John Wiley & Sons, New Jersey, 2012.

    Book  Google Scholar 

  31. Yang B., A distributed transfer function method for heat conduction problems in multilayer composites. Numerical Heat Transfer, Part B: Fundamentals, 2008, 54(4): 314–337.

    Article  ADS  Google Scholar 

  32. Ozisik M., Heat conduction, second ed., John Wiley & Sons, New York, 1993.

    Google Scholar 

  33. Fung Y.C., Foundations of solid mechanics, first ed., Prentice-Hall, New Jersey, 1965.

    Google Scholar 

  34. Powers J.M., On the necessity of positive semi-definite conductivity and Onsager reciprocity in modeling heat conduction in anisotropic media. Journal of Heat Transfer, 2004, 126(5): 670–675.

    Article  Google Scholar 

  35. Bronshtein I.N., Semendyayev K.A., Musiol G., Mühlig H., Handbook of mathematics, 5th ed., Springer, Berlin, 1998.

    Book  MATH  Google Scholar 

  36. Norouzi M., Amiri Delouei A., Seilsepour M., A general exact solution for heat conduction in multilayer spherical composite laminates. Composite Structures, 2013, 106: 288–295.

    Article  Google Scholar 

  37. Yu G.C., Wu L.Z., Feng L.J., Yang W., Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Composite Structures, 2016, 149: 213–219.

    Article  Google Scholar 

  38. Yan P., Chen F., Jiang C., Song F., An eigenfunction expansion-variational method in prediction of the transverse thermal conductivity of fiber reinforced composites considering interfacial characteristics. Composites Science and Technology, 2010, 70(12): 1726–1732.

    Article  Google Scholar 

  39. Grove S., A model of transverse thermal conductivity in unidirectional fibre-reinforced composites. Composites Science and Technology, 1990, 38(3): 199–209.

    Article  Google Scholar 

  40. Mottram J., Design charts for the thermal conductivity of continuous fibre-reinforced composites. Materials & Design, 1992, 13(5): 279–284.

    Article  Google Scholar 

  41. Peng Y., Chiping J., Fan S., Xianghong X., Estimation of transverse thermal conductivity of doubly-periodic fiber reinforced composites. Chinese Journal of Aeronautics, 2010, 23(1): 54–60.

    Article  Google Scholar 

  42. Iswar S., Griffa M., Kaufmann R., Beltran M., Huber L., Brunner S., et al., Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: An X-ray tomography study. Microporous and Mesoporous Materials, 2019, 278: 289–296.

    Article  Google Scholar 

  43. Liang J., Saha M.C., Altan M.C., Effect of carbon nanofibers on thermal conductivity of carbon fiber reinforced composites. Procedia Engineering, 2013, 56: 814–820.

    Article  Google Scholar 

  44. Zheng X., Kim S., Park C.W., Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles. Composites Part A: Applied Science and Manufacturing, 2019, 121: 449–456.

    Article  Google Scholar 

  45. Villière M., Lecointe D., Sobotka V., Boyard N., Delaunay D., Experimental determination and modeling of thermal conductivity tensor of carbon/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2013, 46: 60–68.

    Article  Google Scholar 

  46. Sweeting R., Liu X., Measurement of thermal conductivity for fibre-reinforced composites. Composites AMIRI DELOUEI Amin et al. A Comprehensive Review on Multi-Dimensional Heat Conduction of Multi-Layer and Composite 1905 Part A: Applied Science and Manufacturing, 2004, 35(7-8): 933–938.

    Google Scholar 

  47. Tavman I., Akinci H., Transverse thermal conductivity of fiber reinforced polymer composites. International Communications in Heat and Mass Transfer, 2000, 27(2): 253–261.

    Article  Google Scholar 

  48. Agrawal A., Satapathy A., Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. International Journal of Thermal Sciences, 2015, 89: 203–209.

    Article  Google Scholar 

  49. Vilchevskaya E., Sevostianov I., Overall thermal conductivity of a fiber reinforced composite with partially debonded inhomogeneities. International Journal of Engineering Science, 2016, 98: 99–109.

    Article  MATH  Google Scholar 

  50. Ondruška J., Medved I., Kocí V., Cerný R., Measurement of the contribution of radiation to the apparent thermal conductivity of fiber reinforced cement composites exposed to elevated temperatures. International Journal of Thermal Sciences, 2016, 100: 298–304.

    Article  Google Scholar 

  51. Bonfoh N., Dreistadt C., Sabar H., Micromechanical modeling of the anisotropic thermal conductivity of ellipsoidal inclusion-reinforced composite materials with weakly conducting interfaces. International Journal of Heat and Mass Transfer, 2017, 108: 1727–1739.

    Article  Google Scholar 

  52. Bonfoh N., Jeancolas A., Dinzart F., Sabar H., Mihaluta M., Effective thermal conductivity of composite ellipsoid assemblages with weakly conducting interfaces. Composite Structures, 2018, 202: 603–614.

    Article  Google Scholar 

  53. Bonfoh N., Dinzart F., Sabar H., New exact multi-coated ellipsoidal inclusion model for anisotropic thermal conductivity of composite materials. Applied Mathematical Modelling, 2020. DOI: https://doi.org/10.1016/j.apm.2020.06.005.

    Google Scholar 

  54. Asakuma Y., Yamamoto T., Thermal analysis of resin composites with ellipsoidal filler considering thermal boundary resistance. Journal of Thermal Science, 2016, 25(5): 424–430.

    Article  ADS  Google Scholar 

  55. Ecke N.C., Höller J., Niedermeyer J., Klein P., Schlarb A.K., An adaptation of the Lewis-Nielsen equations for the thermal conductivity of short fiber reinforced hybrid composites. Materials Today Communications, 2019, 21: 100632.

    Article  Google Scholar 

  56. Vaggar G.B., Kamate S., Badyankal P.V., A study on thermal conductivity enhancement of silicon carbide filler glass fiber epoxy resin hybrid composites. Materials Today: Proceedings, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.02.008.

    Google Scholar 

  57. Reddy K.S.K., Kannan M., Karthikeyan R., Laxman B., Evaluation of thermal and mechanical properties of Al7475 alloy reinforced with SiC and graphite. Materials Today: Proceedings, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.02.566.

    Google Scholar 

  58. Zhu C., Cui C., Wu X., Zhang B., Yang D., Zhao H., et al., Study on surface modification of diamond particles and thermal conductivity properties of their reinforced metal-based (Cu or Mg) composites. Diamond and Related Materials, 2020, 108: 107998.

    Article  ADS  Google Scholar 

  59. Yang L., Miyoshi Y., Sugio K., Choi Y., Matsugi K., Sasaki G., Effect of graphite orientation distribution on thermal conductivity of Cu matrix composite. Materials Chemistry and Physics, 2021, 257: 123702.

    Article  Google Scholar 

  60. Li H., Sun J., Zang J., Su N., Feng X., Shen Y., Thermal conductivity of graphene nanoplates reinforced CuCr composite coatings by mechanical alloying method. Surface and Coatings Technology, 2021, 405: 126554.

    Article  Google Scholar 

  61. Mulholland G., Cobble M., Diffusion through composite media. International Journal of Heat and Mass Transfer, 1972, 15(1): 147–160.

    Article  Google Scholar 

  62. Vodicka V., Warmeleitung in geschichteten kugel-und zylinderk orpern. Schweiz Arch, 1950, 10: 297–304.

    Google Scholar 

  63. Vodicka V., Eindimensionale wärmeleitung in geschichteten körpern. Mathematische Nachrichten, 1955, 14(1): 47–55.

    Article  MathSciNet  MATH  Google Scholar 

  64. De Monte F., Transient heat conduction in one-dimensional composite slab. A ‘natural’analytic approach. International Journal of Heat and Mass Transfer, 2000, 43(19): 3607–3619.

    MATH  Google Scholar 

  65. De Monte F., An analytic approach to the unsteady heat conduction processes in one-dimensional composite media. International Journal of Heat and Mass Transfer, 2002, 45(6): 1333–1343.

    Article  MATH  Google Scholar 

  66. Lu X., Tervola P., Transient heat conduction in the composite slab-analytical method. Journal of Physics A: Mathematical and General, 2004, 38(1): 81.

    MathSciNet  MATH  Google Scholar 

  67. Belghazi H., El Ganaoui M., Labbé J.C. Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source. International Journal of Thermal Sciences, 2010, 49(2): 311–318.

    Article  Google Scholar 

  68. Salt H., Transient conduction in a two-dimensional composite slab-I. Theoretical development of temperature modes. International Journal of Heat and Mass Transfer, 1983, 26(11): 1611–1616.

    Article  MATH  Google Scholar 

  69. Salt H., Transient conduction in a two-dimensional composite slab-II. Physical interpretation of temperature modes. International Journal of Heat and Mass Transfer, 1983, 26(11): 1617–1623.

    Article  MATH  Google Scholar 

  70. Ma C.C., Chang S.W., Analytical exact solutions of heat conduction problems for anisotropic multi-layered media. International Journal of Heat and Mass Transfer, 2004, 47(8-9): 1643–1655.

    Article  MATH  Google Scholar 

  71. Lu X., Tervola P., Viljanen M., A new analytical method to solve the heat equation for a multi-dimensional composite slab. Journal of Physics A: Mathematical and General, 2005, 38(13): 2873.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  72. Dülk I., Kovácsházy T., Steady-state heat conduction in 1906 J. Therm. Sci., Vol.30, No.6, 2021 multilayer bodies: An analytical solution and simplification of the eigenvalue problem. International Journal of Heat and Mass Transfer, 2013, 67: 784–797.

    Article  Google Scholar 

  73. Mikhailov M., Özisik M., Transient conduction in a three-dimensional composite slab. International Journal of Heat and Mass Transfer, 1986, 29(2): 340–342.

    Article  MATH  ADS  Google Scholar 

  74. Haji-Sheikh A., Beck J., Temperature solution in multi-dimensional multi-layer bodies. International Journal of Heat and Mass Transfer, 2002, 45(9): 1865–1877.

    Article  MATH  Google Scholar 

  75. Mikhailov M., Özisik M., Vulchanov N., Diffusion in composite layers with automatic solution of the eigenvalue problem. International Journal of Heat and Mass Transfer, 1983, 26(8): 1131–1141.

    Article  MATH  ADS  Google Scholar 

  76. Li M., Lai A.C., Analytical solution to heat conduction in finite hollow composite cylinders with a general boundary condition. International Journal of Heat and Mass Transfer, 2013, 60(1): 549–556.

    Article  Google Scholar 

  77. Jaeger J., Heat conduction in composite circular cylinders. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1941, 32(213): 324–335.

    Article  MathSciNet  MATH  Google Scholar 

  78. Pryce J.D., Numerical solution of Sturm-Liouville problems, first ed., Oxford University Press, Oxford, 1993.

    MATH  Google Scholar 

  79. Mikhailov M.D., Ozisik M.N., Unified Analysis and Solutions of Heat and Mass Diffusion, first ed., Dover Publications, New York, 1994.

    Google Scholar 

  80. Yang B., Liu S., Closed-form analytical solutions of transient heat conduction in hollow composite cylinders with any number of layers. International Journal of Heat and Mass Transfer, 2017, 108: 907–917.

    Article  Google Scholar 

  81. Singh S., Jain P.K., Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction. International Journal of Thermal Sciences, 2008, 47(3): 261–273.

    Article  Google Scholar 

  82. Jain P.K., Singh S., Uddin R., Analytical Solution to Transient Asymmetric Heat Conduction in a Multilayer Annulus. Journal of Heat Transfer, 2009, 131(1): 011304.

    Article  Google Scholar 

  83. Singh S., Jain P.K., Uddin R., Finite integral transform method to solve asymmetric heat conduction in a multilayer annulus with time-dependent boundary conditions. Nuclear Engineering and Design, 2011, 241(1): 144–154.

    Article  Google Scholar 

  84. Biswas P., Singh S., Bindra H., Homogenization of time dependent boundary conditions for multi-layer heat conduction problem in cylindrical polar coordinates. International Journal of Heat and Mass Transfer, 2019, 129: 721–734.

    Article  Google Scholar 

  85. Kayhani M., Shariati M., Nourozi M., Demneh M.K., Exact solution of conductive heat transfer in cylindrical composite laminate. Heat and Mass Transfer, 2009, 46(1): 83.

    Article  ADS  Google Scholar 

  86. Norouzi M., Rezaei Niya S., Kayhani M., Shariati M., Karimi Demneh M., Naghavi M., Exact solution of unsteady conductive heat transfer in cylindrical composite laminates. Journal of Heat Transfer, 2012, 134(10): 101301.

    Article  Google Scholar 

  87. Zhou L., Parhizi M., Jain A., Temperature distribution in a multi-layer cylinder with circumferentially-varying convective heat transfer boundary conditions. International Journal of Thermal Sciences, 2021, 160: 106673.

    Article  Google Scholar 

  88. Olek S., Wacholder E., Elias E., Analytical solution of two-dimensional diffusion in a composite medium with application to cooling of reactor fuel elements. Nuclear Engineering and Design, 1994, 150(1): 49–60.

    Article  Google Scholar 

  89. Yeh H.C., An analytical solution to fuel-and-cladding model of the rewetting of a nuclear fuel rod. Nuclear Engineering and Design, 1980, 61(1): 101–112.

    Google Scholar 

  90. Bahadur R., Bar-Cohen A., Orthotropic thermal conductivity effect on cylindrical pin fin heat transfer. International Electronic Packaging Technical Conference and Exhibition, California, USA, 2005, IPACK2005-73181: 245–252. DOI: https://doi.org/10.1115/IPACK2005-73181.

    MATH  Google Scholar 

  91. Bahadur R., Bar-Cohen A., Orthotropic thermal conductivity effect on cylindrical pin fin heat transfer. International Journal of Heat and Mass Transfer, 2007, 5(50): 1155–1162.

    Article  MATH  Google Scholar 

  92. Mustafa M., Zubair S.M., Arif A., Thermal analysis of orthotropic annular fins with contact resistance: A closed-form analytical solution. Applied Thermal Engineering, 2011, 31(5): 937–945.

    Article  Google Scholar 

  93. Zubair S.M., Mustafa M.T., Arif A.F.M., Thermal analysis of orthotropic pin fins with contact resistance: a closed-form analytical solution. Heat Transfer Engineering, 2013, 34(4): 349–360.

    Article  ADS  Google Scholar 

  94. Cossali G., Periodic heat conduction in a solid homogeneous finite cylinder. International Journal of Thermal Sciences, 2009, 48(4): 722–732.

    Article  Google Scholar 

  95. Kayhani M., Norouzi M., Amiri Delouei A., A general analytical solution for heat conduction in cylindrical multilayer composite laminates. International Journal of Thermal Sciences, 2012, 52: 73–82.

    Article  Google Scholar 

  96. Rahmani H., Norouzi M., Birjandi A.K., Birjandi A.K., An exact solution for transient anisotropic heat conduction in composite cylindrical shells. Journal of Heat Transfer, 2019, 141(10): 101301.

    Article  Google Scholar 

  97. Jain P.K., Singh S., An exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates. International Journal of Heat and Mass Transfer, 2010, 53(9-10): 2133–2142.

    Article  MATH  Google Scholar 

  98. Amiri Delouei A., Norouzi M., Exact analytical solution for unsteady heat conduction in fiber-reinforced spherical composites under the general boundary conditions. AMIRI DELOUEI Amin et al. A Comprehensive Review on Multi-Dimensional Heat Conduction of Multi-Layer and Composite 1907 Journal of Heat Transfer, 2015, 137(10): 101701.

    Google Scholar 

  99. Arpaci V., Conduction heat transfer, second ed., Addison-Wesley, Boston, 1996.

    MATH  Google Scholar 

  100. Norouzi M., Rahmani H., Birjandi A., A new exact analysis for anisotropic conductive heat transfer in truncated composite spherical shells. Journal of Mechanics, 2019, 35(5): 677–691.

    Article  Google Scholar 

  101. Norouzi M., Rahmani H., On exact solutions for anisotropic heat conduction in composite conical shells. International Journal of Thermal Sciences, 2015, 94: 110–125.

    Article  Google Scholar 

  102. Norouzi M., Rahmani H., An exact analysis for transient anisotropic heat conduction in truncated composite conical shells. Applied Thermal Engineering, 2017, 124: 422–431.

    Article  Google Scholar 

  103. Manesh B.E., Shahmardan M.M., Rahmani H., Norouzi M., Heterogeneous anisotropic conductive heat transfer in composite conical shells: An exact analysis. International Journal of Heat and Mass Transfer, 2019, 144: 118614.

    Article  Google Scholar 

  104. Manesh B.E., Shahmardan M.M., Norouzi M., Rahmani H., Unsteady anisotropic heat conduction in heterogeneous composite conical shells with temperature-dependent thermal conductivities: an analytical study. Journal of Thermal Analysis and Calorimetry, 2021. DOI: https://doi.org/10.1007/s10973-020-10434-2.

    Google Scholar 

  105. Jaskowiec J., Plucinski P., Three-dimensional modelling of heat conduction in laminated plates with the use of a two-dimensional numerical model. Composite Structures, 2017, 171: 562–575.

    Article  Google Scholar 

  106. Gao X.W., Zheng Y.T., Fantuzzi N., Local least-squares element differential method for solving heat conduction problems in composite structures. Numerical Heat Transfer, Part B: Fundamentals, 2020, 77(6): 441–460.

    Article  ADS  Google Scholar 

  107. Lin J.Y., Chen H.T., Radial axisymmetric transient heat conduction in composite hollow cylinders with variable thermal conductivity. Engineering Analysis with Boundary Elements, 1992, 10(1): 27–33.

    Article  Google Scholar 

  108. Chen H. T., Lin J.Y., Application of the hybrid method to transient heat conduction in one-dimensional composite layers. Computers & structures, 1991, 39(5): 451–458.

    Article  Google Scholar 

  109. Al-Sanea S.A., Two-dimensional heat conduction in a composite slab with temperature-dependent conductivity. Journal of King Saud University-Engineering Sciences, 1995, 7(2): 219–245.

    Article  Google Scholar 

  110. Ciegis R., Jankeviciute G., Suboc O., Numerical simulation of the heat conduction in composite materials. Mathematical Modelling and Analysis, 2010, 15(1): 9–22.

    Article  MathSciNet  MATH  Google Scholar 

  111. Bahadori R., Gutierrez H., Manikonda S., Meinke R., Two-dimensional transient heat conduction in multi-layered composite media with temperature dependent thermal diffusivity using floating random walk Monte-Carlo method. International Journal of Heat and Mass Transfer, 2017, 115: 570–580.

    Article  Google Scholar 

  112. Haji-Sheikh A., Sparrow E.M., The floating random walk and its application to Monte Carlo solutions of heat equations. SIAM Journal on Applied Mathematics, 1966, 14(2): 370–389.

    Article  MathSciNet  MATH  Google Scholar 

  113. Burmeister L.C., The effect of space-dependent thermal conductivity on the steady central temperature of a cylinder. Journal of Heat Transfer, 2002, 124(1): 195–197.

    Article  Google Scholar 

  114. Singh I., A numerical solution of composite heat transfer problems using meshless method. International Journal of Heat and Mass Transfer, 2004, 47(10-11): 2123–2138.

    Article  MATH  Google Scholar 

  115. Demuth C., Mendes M.A., Ray S., Trimis D., Performance of thermal lattice Boltzmann and finite volume methods for the solution of heat conduction equation in 2D and 3D composite media with inclined and curved interfaces. International Journal of Heat and Mass Transfer, 2014, 77: 979–994.

    Article  Google Scholar 

  116. Tian J., Jiang K., Heat conduction investigation of the functionally graded materials plates with variable gradient parameters under exponential heat source load. International Journal of Heat and Mass Transfer, 2018, 122: 22–30.

    Article  Google Scholar 

  117. Amiri Delouei A., Emamian A., Karimnejad S., Sajjadi H., Jing D., Two-dimensional analytical solution for temperature distribution in FG hollow spheres: General thermal boundary conditions. International Communications in Heat and Mass Transfer, 2020, 113: 104531.

    Article  Google Scholar 

Download references

Acknowledgments

Prof. Dengwei Jing gratefully acknowledges the financial support of the National Natural Science Foundation of China (No.52025061 and No.51961130386) and the financial support from the Royal Society-Newton Advanced Fellowship grant (NAF\R1\191163).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin AMIRI DELOUEI or Dengwei JING.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AMIRI DELOUEI, A., EMAMIAN, A., SAJJADI, H. et al. A Comprehensive Review on Multi-Dimensional Heat Conduction of Multi-Layer and Composite Structures: Analytical Solutions. J. Therm. Sci. 30, 1875–1907 (2021). https://doi.org/10.1007/s11630-021-1517-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1517-1

Keywords

Navigation