Skip to main content

Advertisement

Log in

Risk factors of low vitamin D status in adolescent females in Kuwait: implications for high peak bone mass attainment

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Risks of low vitamin D status in Kuwaiti adolescent girls are high parathyroid hormone (PTH), high waist/hip ratio, veiling and not having a private room. Low vitamin D status is likely to have a negative impact on their bone mass and accrual.

Introduction

Low serum 25-hydroxyvitamin D (25OHD) levels are repeatedly found in females in the Middle East, which is a cause for concern particularly for adolescent females. This is because vitamin D has been shown to promote bone mineral accrual in adolescence.

Purpose

The aim of this study was to assess the risk factors of low vitamin D status in adolescent females and to assess its impact on their bone mass.

Methods

Serum 25OHD and PTH were measured in 232 females. Anthropometric measurements and skin colour were obtained. Bone measurements at the lumbar spine were performed using dual-energy x-ray absorptiometry (DXA). Data on food intake, physical activity (PA) and sun exposure were taken. Binary logistic regression was used to assess the risk factors of serum 25OHD levels <25 nmol/L and multiple linear regression was used to assess the predictors of bone mineral variables.

Results

Median 25OHD was 19.4 nmol/L (IQR 16.4–23.68), among which 98.7 % obtained <50 nmol/L. PTH >7 pmol/L (odds ratio (OR) 4.3; 95 % CI 1.8, 10.2), not having a private room (OR 3.7; 95 % CI 1.4, 9.8), veiling (OR 2.4; 95 % CI 1.1, 5.5) and waist/hip ratio >0.75 (OR 2.1; 95 % CI 1.0, 4.3) were risk factors of low vitamin D status, whereas, height, weight, month since menarche, PTH, animal protein intake and PA were independent predictors of bone mineral content (p < 0.05).

Conclusion

Low vitamin D status is prevalent in Kuwaiti adolescent females, which may have a negative impact on their bone mineralization and accrual. Further investigation is needed to reveal the underlying causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bassil D, Rahme M, Hoteit M, El-Hajj Fuleihan G (2013) Hypovitaminosis D in the Middle East and North Africa. Dermatol Endocrinol 5(2):274–298

    Article  Google Scholar 

  2. Molla A, Al Badawi M, Hammoud M, Shukkur M, Thalib L, Eliwa M (2005) Vitamin D status of mothers and their neonates in Kuwait. Pediatr Int 47(6):649–652

    Article  CAS  PubMed  Google Scholar 

  3. Alyahya K, Almazidi Z, Morgan J, Lee W, Berry J, Lanham-New SA (2009) Extensive vitamin D deficiency among the Kuwaiti adolescent females during the summer period: effects of lifestyle habits and implications for PBM attainment. In: 7th International symposium on nutritional aspects of osteoporosis, Tyne & Wear, Lauzanne, Switzerland, p 73

  4. Gordon C, DePeter K, Feldman H, Grace E, Emans S (2004) Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 158(6):531

    Article  PubMed  Google Scholar 

  5. Elizondo-Montemayor L, Ugalde-Casas PA, Serrano-Gonzalez M, Cuello-Garcia CA, Borbolla-Escoboza JR (2010) Serum 25-hydroxyvitamin D concentration, life factors and obesity in Mexican children. Obesity (Silver Spring) 18(9):1805–1811

    Article  CAS  Google Scholar 

  6. Weng FL, Shults J, Leonard MB, Stallings VA, Zemel BS (2007) Risk factors for low serum 25-hydroxyvitamin D concentrations in otherwise healthy children and adolescents. Am J Clin Nutr 86(1):150–158

    CAS  PubMed  Google Scholar 

  7. El-Sonbaty M, Abdul-Ghaffar N (1996) Vitamin D deficiency in veiled Kuwaiti women. Eur J Clin Nutr 50(5):315

    CAS  PubMed  Google Scholar 

  8. Mishal A (2001) Effects of different dress styles on vitamin D levels in healthy young Jordanian women. Osteoporos Int 12(11):931–935

    Article  CAS  PubMed  Google Scholar 

  9. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B (2004) Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 116(9):634–639

    Article  CAS  PubMed  Google Scholar 

  10. Pekkinen M, Viljakainen H, Saarnio E, Lamberg-Allardt C, Makitie O (2012) Vitamin D is a major determinant of bone mineral density at school age. PLoS One 7(7):e40090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. El-Hajj Fuleihan G (2006) Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab 91(2):405

    Article  PubMed  Google Scholar 

  12. Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS (2002) Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr 76(6):1446–1453

    CAS  PubMed  Google Scholar 

  13. Matkovic V, Jelic T, Wardlaw G, Ilich J, Goel P, Wright J, Andon M, Smith K, Heaney R (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Investig 93(2):799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bachrach LK (2001) Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab 12(1):22–28

    Article  CAS  PubMed  Google Scholar 

  15. Pettinato A, Loud K, Bristol S, Feldman H, Gordon C (2006) Effects of nutrition, puberty, and gender on bone ultrasound measurements in adolescents and young adults. J Adolesc Health 39(6):828–834

    Article  PubMed  Google Scholar 

  16. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  CAS  PubMed  Google Scholar 

  17. Javaid M, Crozier S, Harvey N, Gale C, Dennison E, Boucher B, Arden N, Godfrey K, Cooper C (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367(9504):36–43

    Article  CAS  PubMed  Google Scholar 

  18. Ross AC (2011) The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr 14(5):938–939

    Article  PubMed  Google Scholar 

  19. Heaney RP (2005) The vitamin D requirement in health and disease. J Steroid Biochem Mol Biol 97(1–2):13–19

    Article  CAS  PubMed  Google Scholar 

  20. Pathak MA (2004) In memory of Thomas Bernhard Fitzpatrick. J Investig Dermatol 122:20–21

    Article  Google Scholar 

  21. Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476):307–310

    Article  Google Scholar 

  22. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL (2000) CDC growth charts: United States. Adv Data 314:1–27

    PubMed  Google Scholar 

  23. Must A, Dallal GE, Dietz WH (1991) Reference data for obesity: 85th and 95th percentiles of body mass index (wt/ht2) and triceps skinfold thickness. Am J Clin Nutr 53(4):839–846

    CAS  PubMed  Google Scholar 

  24. Siddiqui A, Kamfar H (2007) Prevalence of vitamin D deficiency rickets in adolescent school girls in Western region, Saudi Arabia. Saudi Med J 28(3):441

    PubMed  Google Scholar 

  25. Bener A, Al-Ali M, Hoffmann G (2009) High prevalence of vitamin D deficiency in young children in a highly sunny humid country: a global health problem. Minerva Pediatr 61(1):15

    CAS  PubMed  Google Scholar 

  26. Al-Mutairi N, Issa BI, Nair V (2012) Photoprotection and vitamin D status: a study on awareness, knowledge and attitude towards sun protection in general population from Kuwait, and its relation with vitamin D levels. Indian J Dermatol Venereol Leprol 78(3):342–349

    Article  PubMed  Google Scholar 

  27. Clemens TL, Adams JS, Henderson SL, Holick MF (1982) Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1(8263):74–76

    Article  CAS  PubMed  Google Scholar 

  28. Absoud M, Cummins C, Lim M, Wassmer E, Shaw N (2011) Prevalence and predictors of vitamin D insufficiency in children: a Great Briain population based study. PLoS One 6(7):e22179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ng SW, Zaghloul S, Ali HI, Harrison G, Popkin BM (2011) The prevalence and trends of overweight, obesity and nutrition-related non-communicable diseases in the Arabian Gulf States. Obes Rev 12(1):1–13

    Article  CAS  PubMed  Google Scholar 

  30. Levis S, Gomez A, Jimenez C, Veras L, Ma F, Lai S, Hollis B, Roos BA (2005) Vitamin d deficiency and seasonal variation in an adult South Florida population. J Clin Endocrinol Metab 90(3):1557–1562

    Article  CAS  PubMed  Google Scholar 

  31. Kollias N, Baqer A (1984) Measurements of solar middle ultraviolet radiation in Kuwait. Sol Wind Technol 1(1):59–62

    Article  Google Scholar 

  32. Binkley N, Novotny R, Krueger D, Kawahara T, Daida Y, Lensmeyer G, Hollis B, Drezner M (2007) Low vitamin D status despite abundant sun exposure. J Clin Endocrinol Metab 92(6):2130

    Article  CAS  PubMed  Google Scholar 

  33. Carter GD, Carter CR, Gunter E, Jones J, Jones G, Makin HLJ, Sufi S (2004) Measurement of vitamin D metabolites: an international perspective on methodology and clinical interpretation. J Steroid Biochem Mol Biol 89–90:467–471

    Article  PubMed  Google Scholar 

  34. Arabi A, Nabulsi M, Maalouf J, Choucair M, Khalifé H, Vieth R, El-Hajj Fuleihan G (2004) Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone 35(5):1169–1179

    Article  PubMed  Google Scholar 

  35. Dougherty G, Al-Marzouk N (2001) Bone density measured by dual-energy X-ray absorptiometry in healthy Kuwaiti women. Calcif Tissue Int 68(4):225–229

    Article  CAS  PubMed  Google Scholar 

  36. Mahussain S, Badr H, Al-Zaabi K, Mohammad M, Alnafisi N (2006) Bone mineral density in healthy Kuwaiti women. Arch Osteoporos 1(1):51–57

    PubMed Central  Google Scholar 

  37. Hammoudeh M, Mohammed A-K, Mahmoud Z, Abdulbari B (2005) Bone density measured by dual energy X-ray absorptiometry in Qatari women. Maturitas 52(3):319–327

    Article  PubMed  Google Scholar 

  38. Promislow JHE, Goodman-Gruen D, Slymen DJ, Barrett-Connor E (2002) Protein consumption and bone mineral density in the elderly. Am J Epidemiol 155(7):636–644

    Article  PubMed  Google Scholar 

  39. Weikert C, Walter D, Hoffmann K, Kroke A, Bergmann MM, Boeing H (2005) The relation between dietary protein, calcium and bone health in women: results from the EPIC-Potsdam cohort. Ann Nutr Metab 49(5):312–318

    Article  CAS  PubMed  Google Scholar 

  40. Stear SJ, Prentice A, Jones SC, Cole TJ (2003) Effect of a calcium and exercise intervention on the bone mineral status of 16–18-y-old adolescent girls. Am J Clin Nutr 77(4):985–992

    CAS  PubMed  Google Scholar 

  41. Barkai H-S, Jeanne FN, Mitchell JR, Michelle TB, Mandra JL, Susan SL (2007) Influence of sports participation and menarche on bone mineral density of female high school athletes. J Sci Med Sport Sport Med Aust 10(3):170–179

    Article  Google Scholar 

  42. Arabi A, Baddoura R, El-Rassi R, El-Hajj Fuleihan G (2010) Age but not gender modulates the relationship between PTH and vitamin D. Bone 47(2):408–412

    Article  CAS  PubMed  Google Scholar 

  43. Tylavsky FA, Ryder KM, Li R, Park V, Womack C, Norwood J, Carbone LD, Cheng S (2007) Preliminary findings: 25(OH)D levels and PTH are indicators of rapid bone accrual in pubertal children. J Am Coll Nutr 26(5):462–470

    Article  CAS  PubMed  Google Scholar 

  44. Yan L, Zhou B, Wang X, Ath SD, Laidlaw A, Laskey MA, Prentice A (2003) Older people in China and the United Kingdom differ in the relationships among parathyroid hormone, vitamin D, and bone mineral status. Bone 33(4):620–627

    Article  CAS  PubMed  Google Scholar 

  45. Aloia JF, Talwar SA, Pollack S, Feuerman M, Yeh JK (2006) Optimal vitamin D status and serum parathyroid hormone concentrations in African American women. Am J Clin Nutr 84(3):602–609

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research was sponsored by the Public Authority for Applied Education and Training, Kuwait. Special thanks to Dr. Ibrahim Al-Muzairi for his approval on biochemical analysis. Many thanks to all the technicians who contributed to the research, particularly, Mr. Hussain and Miss Samar for their technical work and assistance. I am grateful to Mr. Ali Baqir for sharing his knowledge regarding UV research in Kuwait.

Conflicts of interest

Susan Lanham-New is Co-Director of D3Tex Ltd which holds the UK Patent (GCC pending) on the application of UV-B transparent material for prevention of vitamin D deficiency in women who dress for cultural style. Khulood Alyahya, Warren Lee, Zaidan Al-Mazeedi and Jane Morgan declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khulood Alyahya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyahya, K., Lee, W.T.K., Al-Mazidi, Z. et al. Risk factors of low vitamin D status in adolescent females in Kuwait: implications for high peak bone mass attainment. Arch Osteoporos 9, 178 (2014). https://doi.org/10.1007/s11657-014-0178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-014-0178-z

Keywords

Navigation