Skip to main content
Log in

Finite-element analysis of effects of the laser-processed bimaterial component size on stresses and distortion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Processing of bimaterial parts via a moving laser beam has been investigated using three-dimensional (3D) finite-element modeling. Effects of the size of parts on the temperature distribution, thermal transient stresses, residual stresses, and distortion have been evaluated. The result indicates that the size of the part to be processed has strong influence on the transient temperature, transient stresses, residual stresses, and distortion of the part. Distortion is small when the size of the part is small and can be predicted from the thermal-expansion mismatch between the two materials. However, when the size of the part becomes large, both distortion and residual stresses increase. Furthermore, both distortion and residual stresses, in this case, cannot be predicted based on the thermal-expansion mismatch alone. The distortion, in this case, is mainly determined by the asymmetrical plastic deformation driven by transient thermal stresses, while residual stresses are dictated by the thermal-expansion mismatch and the temperature gradient of the part before and during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Beaman, J.W. Barlow, D.L. Bourell, R.H. Crawford, H.L. Marcus, and K.P. McAlea: Solid Freeform Fabrication: A New Direction in Manufacturing, Kluwer Academic Publishers, Boston, MA, 1997.

    Google Scholar 

  2. L.-C. Sun and L. Shaw: Metall. Mater. Trans., 1999, 30A, pp. 2549–51.

    CAS  Google Scholar 

  3. J.E. Crocker, S. Harrison, L.-C. Sun, L. Shaw, and H. Marcus: JOM, 1998, vol. 50, pp. 21–23.

    CAS  Google Scholar 

  4. K.J. Jakubenas, J.E. Crocker, S. Harrison, L.-C. Sun, L. Shaw, and H. Marcus: Nav. Res. Rev., 1998, vol. L (3), pp. 51–57.

    Google Scholar 

  5. X. Li, J. Crocker, E. Geiss, L. Shaw, H. Marcus, and T. Cameron: Proc. 11th Annual SFF Symp., D.L. Bourell, J.J. Beaman, R.H. Crawford, H.L. Marcus, and J.W. Barlow, eds., The University of Texas, Austin, TX, 2000, pp. 159–67.

    Google Scholar 

  6. R.K. Chin, J.L. Beuth, and C.H. Amon: Mech. Mater., 1996, vol. 24, pp. 257–71.

    Article  Google Scholar 

  7. C.H. Amon, J.L. Beuth, R. Merz, F.B. Prinz, and L.E. Weiss: J. Manufact. Sci. Eng., 1998, vol. 120 (3), pp. 656–65.

    Google Scholar 

  8. R. Ong, J.L. Beuth, and L.E. Weiss: in Proc. 11th Annual SFF Symp., D.L. Bourell, J.J. Beaman, R.H. Crawford, H.L. Marcus, and J.W. Barlow, eds., The University of Texas, Austin, TX, 2000, pp. 209–18.

    Google Scholar 

  9. A. Vasinonta, J.L. Beuth, and M.L. Griffith: Proc. 11th Annual SFF Symp., D.L. Bourell, J.J. Beaman, R.H. Crawford, H.L. Marcus, and J.W. Barlow, eds., The University of Texas, Austin, TX, 2000, pp. 200–08.

    Google Scholar 

  10. M. Kandis and T.L. Bergman: J. Manufact. Sci. Eng., 2000, vol. 122 (3), pp. 439–44.

    Article  Google Scholar 

  11. J. Steinberger, J. Shen, K. Manetsberger, and J. Muellers: Proc. 11th Annual SFF Symp., D.L. Bourell, J.J. Beaman, R.H. Crawford, H.L. Marcus, and J.W. Barlow, eds., The University of Texas, Austin, TX, 2000, pp. 377–85.

    Google Scholar 

  12. Y. Zhang and A. Faghri: Int. J. Heat Mass Transfer, 1999, vol. 42, pp. 775–88.

    Article  CAS  Google Scholar 

  13. T.H.C. Childs, C. Hauser, C.M. Taylor, and A.E. Tontowi: Proc. 11th Annual SFF Symp., D.L. Bourell, J.J. Beaman, R.H. Crawford, H.L. Marcus, and J.W. Barlow, eds., The University of Texas, Austin, TX, 2000, pp. 100–09.

    Google Scholar 

  14. G. Bugeda, M. Cervera, and G. Lombera: Rapid Prototyping J., 1999, vol. 5, pp. 21–26.

    Article  Google Scholar 

  15. K. Dai, P. Klemens, and L. Shaw: Proc. 11th Annual SFF Symp., D.L. Bourell, J.J. Beaman, R.H. Crawford, H.L. Marcus, and J.W. Barlow, eds., The University of Texas, Austin, TX, 2000, pp. 386–92.

    Google Scholar 

  16. K. Dai and L. Shaw, Acta Mater., 2001, vol. 49, pp. 4171–81.

    Article  CAS  Google Scholar 

  17. Y.S. Touloukian and D.P. DeWitt: Thermophysical Properties of Mater, vol. 7, Thermal Radiative Properties: Metallic Elements and Alloys, IFI/Plenum, New York, NY, 1970.

    Google Scholar 

  18. D.R. Poirier and G.H. Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994.

    Google Scholar 

  19. Taylor Lyman: Metals Handbook, 8th ed., vol. 1, Properties and Selection of Metals, ASM, Metals Park, OH, 1961.

    Google Scholar 

  20. Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens: Thermophysical Properties of Matter, vol. 1, Thermal Conductivity: Metallic Elements and Alloys, IFI/Plenum, New York, NY, 1970.

    Google Scholar 

  21. Y.S. Touloukian and E.H. Buyco: Thermophysical Properties of Matter, vol. 4, Specific Heat: Metallic Elements and Alloys, IFI/Plenum, New York, NY, 1970.

    Google Scholar 

  22. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and P.D. Deai: Thermophysical Properties of Matter, vol. 12, Thermal Expansion: Metallic Elements and Alloys, IFI/Plenum, New York, NY, 1975.

    Google Scholar 

  23. O. Kubaschewski, C.B. Alcock, and P.J. Spencer: Materials Thermochemistry, 6th ed., Pergamon Press, Oxford, England, 1993.

    Google Scholar 

  24. Y.S. Touloukian and D.P. DeWitt: Thermophysical Properties of Matter, vol. 8, Thermal Radiative Properties: Nonmetallic Solids, IFI/Plenum, New York, NY, 1972.

    Google Scholar 

  25. Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens: Thermophysical Properties of Matter, vol. 2, Thermal Conductivity: Nonmetallic Solids, IFI/Plenum, New York, NY, 1970.

    Google Scholar 

  26. Y.S. Touloukian and E.H. Buyco: Thermophysical Properties of Matter, vol. 5, Specific Heat: Nonmetallic Solids, IFI/Plenum, New York, NY, 1970.

    Google Scholar 

  27. Y.S. Touloukian and C.Y. Ho: Thermophysical Properties of Matter, vol. 12, Thermal Expansion: Nonmetallic Solids, IFI/Plenum, New York, NY, 1970.

    Google Scholar 

  28. S.J. Schneider: Engineered Materials Handbook, vol. 4, Ceramics and Glasses, ASM INTERNATIONAL, Materials Park, OH, 1991.

    Google Scholar 

  29. J.R. Mackert, M.B. Butts, R. Morena, and C.W. Fairhurst: J. Am. Ceram. Soc., 1986, volume 69, pp. C-69–C-72.

    Article  CAS  Google Scholar 

  30. ANSYS User’s Manual, Swanson Analysis Systems, Inc., Houston, PA, 1992, vol. I–VI.

  31. S.W. Churchill: Heat Exchanger Design Handbook, Hemisphere Publishing Corp., New York, NY, 1983.

    Google Scholar 

  32. ANSYS Theory Reference, Release 5.6, Peter Kohnke, (ed.), ANSYS Inc., Canonsburg, PA, 1999.

    Google Scholar 

  33. E.P. Unksov, W. Johnson, and V.L. Kolmogorov: Theory of Plastic Deformation of Metals, Mashinostroyenie Press, Moscow, Russia, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, K., Shaw, L. Finite-element analysis of effects of the laser-processed bimaterial component size on stresses and distortion. Metall Mater Trans A 34, 1133–1145 (2003). https://doi.org/10.1007/s11661-003-0133-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0133-x

Keywords

Navigation