Skip to main content
Log in

Magnesium Bis(Oxalate)Borate as a Potential Electrolyte for Rechargeable Magnesium Ion Batteries

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magnesium bis(oxalate)borate salt (Mg(B(C2O4)2)2 or Mg(BOB)2) was prepared by a solid-state reaction solvent-free process, and is potentially viable to be used as an electrolytic material for magnesium ion batteries (MIBs). The synthesis was achieved by mixing oxalic acid, boric acid, and magnesium hydroxide using a molar ratio of 4:2:1, respectively. The resulting powders were dried under vacuum at 60°C, then pressed into pellets, and heated at 110 °C for 3 h, with a final heating at 150 °C for 12 h. The crystalline structure and particle morphology of the reaction product were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Fourier-transform infrared (FTIR) spectroscopy results confirmed the presence of functional groups in the final product, identified by the absorption bands C = O, C-O-B-O-C, O-B-O, and B-O. In order to evaluate the electrochemical properties, pure crystalline Mg(BOB)2 powders were dissolved in tetrahydrofuran (THF) and evaluated within a three-electrode electrolytic cell and in half-cells through cyclic voltammetry (CV) curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Liang, C.-Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J.-Q. Huang, Yu. Dingshan, Y. Liu, M.-M. Titirici, Y.-L. Chueh, Yu. Haijun, and Q. Zhang, A review of rechargeable batteries for portable electronic devices. InfoMat 1, 6 (2019).

    Article  CAS  Google Scholar 

  2. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, and R. Gorini, The role of renewable energy in the global energy transformation. Energy Strategy Rev. 24, 38 (2019).

    Article  Google Scholar 

  3. B. John, Goodenough, How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204 (2018).

    Article  Google Scholar 

  4. A. Ramar and F.-M. Wang, Advances in polymer electrode materials for alkali metals (lithium, sodium and potassium)-ion rechargeable batteries. J. Mater. Sci. Mater. 31, 21832 (2020).

    Article  CAS  Google Scholar 

  5. A. Watanabe, K. Yamamoto, Y. Orikasa, T. Masese, T. Mori, T. Uchiyama, T. Matsunaga, and Y. Uchimoto, Reaction mechanism of electrochemical insertion/extraction of magnesium ions in olivine-type FePO4. Solid State Ion. 349, 115311 (2020).

    Article  CAS  Google Scholar 

  6. X. Lei, Y. Zheng, F. Zhang, Y. Wang, and Y. Tang, Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Mater. 30, 34 (2020).

    Article  Google Scholar 

  7. Z. Zhang, S. Dong, Z. Cui, Du. Aobing, G. Li, and G. Cui, Rechargeable magnesium batteries using conversion-type cathodes: a perspective and minireview. Small Methods 2, 1800020 (2018).

    Article  Google Scholar 

  8. T. Placke, R. Kloepsch, S. Dühnen, and M. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21, 1939 (2017).

    Article  CAS  Google Scholar 

  9. R. Attias, M. Salama, B. Hirsch, Y. Goffer, and D. Aurbach, Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3, 1 (2019).

    Article  Google Scholar 

  10. R. Deivanayagam, B.J. Ingram, and R. Shahbazian-Yassar, Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 21, 136 (2019).

    Article  Google Scholar 

  11. R. Dominko, J. Bitenc, R. Berthelot, M. Gauthier, G. Pagot, and V. Di Noto, Magnesium batteries: current picture and missing pieces of the puzzle. J. Power Sour. 478, 229027 (2020).

    Article  CAS  Google Scholar 

  12. M. Rashad, M. Asif, Y. Wang, Z. He, and I. Ahmed, Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater. 25, 342 (2020).

    Article  Google Scholar 

  13. Z. Zhang, Z. Cui, L. Qiao, J. Guan, Xu. Huimin, PuHu. Xiaogang Wang, Du. Huiping, S. Li, X. Zhou, S. Dong, Z. Liu, G. Cui, and L. Chen, Novel design concepts of efficient Mg-ion Electrolytes Toward High-Performance Magnesium-Selenium And Magnesium-Sulfur Batteries. Adv. Energy Mater. 7, 1602055 (2017).

    Article  Google Scholar 

  14. A. Le Bail, Monte carlo indexing with McMaille. Powder Diffr. 19, 249 (2004).

    Article  Google Scholar 

  15. K. He, N. Chen, C. Wang, L. Wei, and J. Chen, Method for determining crystal grain size by X-Ray diffraction. Cryst. Res. Technol. 53, 1700157 (2018).

    Article  Google Scholar 

  16. E.M. Wigayati, C.R. Ratri, I. Purawiardi, F. Rohman, T. Lestariningsih, Microstructure analysis of synthesized LiBOB. Indones. J. Chem. 15, 242 (2015).

    Article  CAS  Google Scholar 

  17. C. Ge, L. Wang, L. Xue, Wu. Zhong-Shuai, H. Li, Z. Gong, and X.-D. Zhang, Synthesis of novel organic-ligand-doped sodium bis(oxalate)-borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries. J. Power Sour. 248, 77 (2014).

    Article  CAS  Google Scholar 

  18. L. Wang, W. Han, C. Ge, R. Zhang, Y. Bai, and X. Zhang, Functionalized carboxyl carbon/NaBOB composite as highly conductive electrolyte for sodium ion batteries. ChemistrySelect 3, 9293 (2018).

    Article  CAS  Google Scholar 

  19. T. Lestariningsih, Christin Rina Ratri, Etty Marty Wigayati, and Qolby Sabrina, Characterization of pore and crystal structure of synthesized LiBOB with varying quality of raw materials as electrolyte for lithium-ion battery. AIP Conf. Proc. 1711, 060005–060011 (2016).

    Article  Google Scholar 

  20. Etty Marti Wigayati, Titik Lestariningsih, Achmad Subhan, Christin Rina Ratri, and Ibrahim Purawiardi, Synthesis and characterization of LiBOB as electrolyte for lithium-ion battery. Ionics 22, 43 (2016).

    Article  Google Scholar 

  21. Etty Marti Wigayati, Titik Lestariningsih, Christin Rina Ratri, Ibrahim Purawiardi, and Bambang Prihandoko, Synthesis of LiBOB fine powder to increase solubility. Makara J. Technol. 21, 26 (2017).

    Article  Google Scholar 

  22. C. Zor, Yaprak Subası̧, Durata Haciu, Mehmet Somer, and Semih Afyon, guide to water free lithium Bis(oxalate) borate (LiBOB). J. Phys. Chem. C. 125, 11310 (2021).

    Article  CAS  Google Scholar 

  23. F. Cheng, X. Zhang, Y. Qiu, J. Zhang, Yi. Liu, P. Wei, Ou. Mingyang, S. Sun, Xu. Yue, Q. Li, C. Fang, J. Han, and Y. Huang, Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries. Nano Energy 88, 106301 (2021).

    Article  CAS  Google Scholar 

  24. A.A. Kamnev, A.V. Tugarova, Y.A. Dyatlova, P.A. Tarantilis, O.P. Grigoryeva, A.M. Fainleib, and S. De Luca, Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples. Spectrochim Acta A Mol. Biomol. Spectrosc. 193, 558 (2018).

    Article  CAS  Google Scholar 

  25. E.F. Medvedev and ASh. Komarevskaya, IR Spectroscopic study of the phase composition of boric acid as a component of glass batch. Glass Ceram. 64, 42 (2007).

    Article  CAS  Google Scholar 

  26. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry, 5th ed., (New York: Wiley, 1997).

    Google Scholar 

  27. A. Tsurumaki, M. Branchi, A. Rigano, R. Poiana, and S. Panero, and Maria Assunta Navarra, Bis(oxalato)borate and difluoro(oxalato)borate-based ionic liquids as electrolyte additives to improve the capacity retention in high voltage lithium batteries. Electrochim. Acta 315, 17 (2019).

    Article  CAS  Google Scholar 

  28. T. Lestariningsih, Q. Sabrina, I. Nuroniah, B. Prihandoko, E. Marti Wigayati, and C. Rina Ratri, Study the synthesis of LiBOB compounds using lithium sources from sea water. J. Phys.: Conf. Ser. 1282, 012044 (2019).

    CAS  Google Scholar 

  29. L. Shiyou, L. Wenbo, C. Xiaoling, L. Chunlei, H. Yamin, Y. Li, W. Peng, W. Jie, W. Yuan. Patent number: CN 110305151 A (2019)

  30. J. Shi, J. Zhang, J. Guo, and Lu. Jun, Interfaces in rechargeable magnesium batteries. Nanoscale Horiz. 5, 1467 (2020).

    Article  CAS  Google Scholar 

  31. Y. Yamada, J. Wang, S. Ko, E. Watanabe, and A. Yamada, Advances and issues in developing saltconcentrated battery electrolytes. Nat. Energy 4, 269 (2019).

    Article  CAS  Google Scholar 

  32. T. Ichitsubo, T. Adachi, S. Yagi, and T. Doi, Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem. 21, 11764 (2011).

    Article  CAS  Google Scholar 

  33. T.T. Tran, W.M. Lamanna, and M.N. Obrovac, Evaluation of Mg[N(SO2CF3)2]2/acetonitrile electrolyte for use in Mg-Ion cells. J. Electrochem. Soc. 159, A2005 (2012).

    Article  CAS  Google Scholar 

  34. J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G.D. Allred, J. Zajicek, and Y. Kotani, Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941 (2012).

    Article  CAS  Google Scholar 

  35. P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, and P.N. Kumta, Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1 (2014).

    Article  CAS  Google Scholar 

  36. R. Mohtadi and F. Mizuno, Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291 (2014).

    Article  Google Scholar 

  37. K. S. Han, N. T. Hahn, K. R. Zavadil, N. R. Jaegers, Y. Chen, J. Z. Hu, V. Murugesan, and K. T. Mueller (2021). Factors influencing preferential anion interactions during solvation of multivalent cations in ethereal solvents. J. Phys. Chem. C. 125 6005

  38. Z. Ma, D.R. MacFarlane, and M. Kar, Mg cathode materials and electrolytes for rechargeable Mg batteries: a review. Batter. Supercaps 2, 1 (2019).

    Article  Google Scholar 

  39. Z. Zhao-Karger and M. Fichtner, Beyond intercalation chemistry for rechargeable Mg batteries: a short review and perspective. Front. Chem. 6, 656 (2019).

    Article  Google Scholar 

  40. L. Kong, C. Yan, J.-Q. Huang, M.-Q. Zhao, M.-M. Titirici, R. Xiang, and Q. Zhang, A review of advanced energy materials for magnesium– sulfur batteries. Energy Environ. Mater. 1, 100 (2018).

    Article  CAS  Google Scholar 

  41. H. Shuai, Xu. Jing, and K. Huang, Progress in retrospect of electrolytes for secondary magnesium batteries. Coord. Chem. Rev. 422, 213478 (2020).

    Article  CAS  Google Scholar 

  42. A. Chernyaev, J. Partinen, L. Klemettinen, B.P. Wilson, A. Jokilaakso, and M. Lundstrom, The efficiency of scrap Cu and Al current collector materials as reductants in LIB waste leaching. Hydrometallurgy 203, 105608 (2021).

    Article  CAS  Google Scholar 

  43. Y. Youssef, W. El Bestawy, M. Ghazy, M. Shehadeh, and I. Hassan, Investigation of the corrosion behaviour of welded area of austenitic stainless steels under stress. Int. J. Chem. Eng. Appl. 9, 135 (2018).

    CAS  Google Scholar 

  44. Y. Zhang, H. Geng, W. Wei, J. Ma, and L. Chen, and Cheng Chao Li, challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Mater. 20, 118 (2018).

    Article  Google Scholar 

  45. O. Tutusaus, R. Mohtadi, T.S. Arthur, F. Mizuno, E.G. Nelson, and Y.V. Sevryugina, An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. 54, 7900 (2015).

    Article  CAS  Google Scholar 

  46. S. M. de la Parraarciniega, E. Gonzálezjuárez, R. A. Hernándezcarrillo, R. Brionesmartínez, R. M. Jiménezbarrera, N. A. Garciagómez, E. M. Sánchez. A Mg2+/Li+ hybrid‑ion battery based on MoS2 prepared by solvothermal synthesis with ionic liquid assistance. J. Mater. Sci. Mater. Electron. 31 14702 (2020)

  47. V. Duffort, X. Sun, and L.F. Nazar, Screening for positive electrodes for magnesium batteries: a protocol for studies at elevated temperatures. Chem. Commun. 52, 12458 (2016).

    Article  CAS  Google Scholar 

  48. A.C. Kucuk, T. Minato, T. Yamanaka, and T. Abe, Effects of LiBOB on salt solubility and BiF3 electrode electrochemical properties in fluoride shuttle batteries. J. Mater. Chem. A 7, 8559–8567 (2019). https://doi.org/10.1039/C8TA10396H.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León for financial support and the laboratory equipment used in this project (Materials Laboratory 2) at División de Estudios de Posgrado. Jesús Guzmán-Torres also thanks to CONACYT for the scholarship awarded to continue the PhD studies.

Funding

Consejo Nacional de Ciencia y Tecnología,888794,Jesus Guzman-Torres,Universidad Autónoma de Nuevo León,1940246

Author information

Authors and Affiliations

Authors

Contributions

JG-T: Investigation, validation, software, formal analysis, and writing-original draft. DLO-G: Helped with electrolytes preparation. LLG-T: XRD testing participation. LCT-G: Electrochemical testing participation. SM de la P-A: FTIR testing participation. EG-J: Battery assembly supervision. IG: Conceptualization and writing comments. EMS: Conceptualization, supervision, writing-review and editing, funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eduardo M. Sánchez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1218 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Torres, J., Ochoa-Gamboa, D.L., Garza-Tovar, L.L. et al. Magnesium Bis(Oxalate)Borate as a Potential Electrolyte for Rechargeable Magnesium Ion Batteries. J. Electron. Mater. 52, 1250–1257 (2023). https://doi.org/10.1007/s11664-022-10073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10073-3

Keywords

Navigation