Skip to main content
Log in

A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A three-dimensional model of a Cold Gas Dynamic Spray system with a peripheral nonaxisymmetric powder feeder is studied in this work. It is found that the stagnation pressure alternates for different substrate standoff distances due to the nature of the supersonic flow interaction with the substrate. One can find the optimum substrate location for any given operating condition, which results in minimum pressure buildup on the substrate. The three-dimensional analysis sheds more light on the complex gas and particle flow fields generated due to the three-dimensional particle injection process. In addition, the three-dimensional model allows us to further investigate the effect of practical substrate shapes (such as convex and concave) on the flow field and consequently to determine the optimum conditions to deposit coating particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area of the particle, m2

C D :

Drag coefficient

D :

Particle diameter, m

F b :

Body force, N

Ma :

Mach number

m :

Mass, kg

R :

Specific gas constant, J/kg K

Re :

Reynolds number

T :

Temperature, K

t :

Time, s

V :

Velocity vector, m/s

ρ:

Density, kg/m3

γ:

Specific heat ratio

μ:

Molecular viscosity, kg/m s

p:

Particle

g:

Gas

References

  1. A.P. Alkhimov, V.F. Kosareve, A.N. Papyrin, A Method of Cold Gas Dynamic Spray Deposition, Dokl. Akad. Nauk SSSR, 1990, 315(5), p 1062-1065

    CAS  Google Scholar 

  2. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushapanov, Gas Dynamic Spray Method for Applying a Coating, U.S. Patent 5,302,414, 1994

  3. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushapanov, Method and Device for Coating, European Patent 0 484 533 B1, 1995

  4. M. Karimi, A. Fartaj, G.W. Rankin, D. Vanderzwet, J. Villafuerte, W. Birtch, Numerical Simulation of the Cold Gas Dynamic Spray Process, J. Thermal Spray Technol., 2006, 15(4), p 518-523

    Article  CAS  Google Scholar 

  5. T. Stoltenhoff and H. Kreye, Cold Spraying—from Thermal Spraying to High Kinetic Energy Spraying, 5th HVOF. Colloquium Proc., November 16-17, 2000 (Erding, Germany), GTS E.V. 2000

  6. Q. Zhu and A. Dolatabadi, Computational Modeling of Cold Spray Process: Effect of Substrate and Particle Size on Gas-Particle Flow, Building on 100 Years of Success: Proceedings of the 2006 International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.C. Lau, R.S. Lima, and J. Voyer, Eds., May 15-18, 2006 (Seattle, WA, USA), ASM International, 2006

  7. G.D. Power, E.B. Smith, T.J. Barber, and L.M. Chiappetta, Analysis of a Combustion (HVOF) Spray Deposition Gun, Report 91-8, United Technologies Research Center, East Hartford, CT, 1991

  8. E.B. Smith, G.D. Power, T.J. Barber, and L.M. Chiappetta, Application of Computational Fluid Dynamics to the HVOF Thermal Spray Gun, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., May 25-June 5, 1992 (Orlando, FL), ASM International, 1992, p 805-810

  9. W.L. Oberkampf, M. Talpallikar, Analysis of a High Velocity Oxy-Fuel (HVOF) Thermal Spray Torch, Part 1: Numerical Formulation, J. Thermal Spray Technol., 1996, 5(1), p 53-61

    Article  CAS  Google Scholar 

  10. W.L. Oberkampf, M. Talpallikar, Analysis of a High Velocity Oxy-Fuel (HVOF) Thermal Spray Torch, Part 2: Numerical Formulation, J. Thermal Spray Technol., 1996, 5(1), p 62-81

    Article  CAS  Google Scholar 

  11. X. Yang, S. Eidelman, Numerical Analysis of a High Velocity Oxy-Fuel Thermal Spray System, J. Thermal Spray Technol., 1996, 5(2), p 175-184

    Article  CAS  Google Scholar 

  12. B. Hassan, A.R. Lopez, W.L. Oberkampf, Computational Analysis of a Three-Dimensional High Velocity Oxygen Fuel (HVOF) Thermal Spray Torch, J. Thermal Spray Technol., 1998, 7(1), p 71-77

    CAS  Google Scholar 

  13. A. Dolatabadi, J. Mostaghimi, and M. Ivanovic, Numerical Modeling of Particle Laden Flow in HVOF Torch with Gas Shroud, Proceedings of the 1st International Thermal Spray Conference, Montreal, Quebec, Canada, 2000, p 105-113

  14. A. Dolatabadi, J. Mostaghimi, and M. Ivanovic, Modeling all Speed Particle Laden Flows Using a Fully Eulerian Approach, Proceedings of the 9th Annual Conference of the CFD Society of Canada, Waterloo, Ontario, Canada, 2001, p 412-417

  15. A. Dolatabadi, J. Mostaghimi, V. Pershin, Modeling Dense Suspension of Solid Particles in Highly Compressible Flows, Int. J. Comput. Fluid Dyn., 2004, 18(2), p 125-131

    Article  Google Scholar 

  16. Fluent 6.2 User’s Guide, Fluent Inc.

  17. S. Sarkar, G. Erlebacher, M.Y. Hussaini, H.O. Kreiss, Analysis and Modeling of Dilatation Terms in Compressible Turbulence, J. Fluid Mech., 1991, 227, p 473-493

    Article  Google Scholar 

  18. S. Sarkar, B. Lakshmanan, Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer, J. AIAA, 1991, 29(5), p 743-749

    Article  Google Scholar 

  19. B. Jodoin, Cold Spray Nozzle Mach Number Limitations, J. Therm. Spray Technol., 2002, 11(4), p 496-507

    Article  Google Scholar 

  20. R.C. Dykhuizen, M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998,7(2), p 205-212

    Article  CAS  Google Scholar 

  21. M. Karimi, An Investigation of the Cold Gas Dynamic Supersonic Spray Process Particle/Flow Field, MASc. Thesis, University of Windsor, Windsor, Canada, 2005

  22. M. Grujicic, C. Tong, W.S. DeRosset, and D. Helfritch, Flow Analysis and Nozzle-Shape Optimization for the Cold Gas Dynamic Spray Process, Proceedings of the Institution of Mechanical Engineers, Part B: J. Eng. Manufacture, 2003 (London, UK), Mechanical Engineering Publications, 217(11), p 1603-1614

  23. V. Shukla, G.S. Elliott, B.H. Kear, Nanopowder Deposition by Supersonic Rectangular Jet Impingement, J. Therm. Spray Technol., 2000, 9(3), p 394-398

    Article  CAS  Google Scholar 

  24. P.H. Shipway, I.M. Hutchings, Method for Optimizing the Particle Flux in Erosion Testing with a Gas-Blast Apparatus, Wear, 1994, 174(1-2), p 169-175

    Article  Google Scholar 

  25. A. Dolatabadi, J. Mostaghimi, V. Pershin, Effect of Cylindrical Shroud on Particle in High Velocity Oxy-Fuel Spray Process, Sci. Technol. Adv. Mat., 2002, 3, p 245-255

    Article  CAS  Google Scholar 

  26. C.T. Crowe, Drag Coefficient on Particles in a Rocket Nozzle, J. AIAA, 1967, 5(5), p 1021-1022

    Google Scholar 

  27. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops and Particles, Academic Press, New York, 1978

    Google Scholar 

  28. M. Karimi, G.W. Rankin, and A. Fartaj, A Numerical Investigation of the Flow Field of a Supersonic Jet Impinging on a Flat Plat, Proceedings of the CFD Society of Canada, 2005 (St. Johns, Newfoundland, Canada)

Download references

Acknowledgments

The authors would like to thank Drs. E. Irissou and C. Moreau from National Research Council Canada-Industrial Materials Institute (NRC-IMI) for their technical support. This work was financially supported by the Natural Sciences and Engineering Research Council Canada (NSERC) and Le Fonds québécois de la recherche sur la nature et les technologies (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dolatabadi.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samareh, B., Dolatabadi, A. A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape. J Therm Spray Tech 16, 634–642 (2007). https://doi.org/10.1007/s11666-007-9082-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9082-z

Keywords

Navigation