Skip to main content
Log in

Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Numerical simulations of gas/particle flows of cold spray are performed for N2 and He, respectively, to investigate the usefulness of the two material-independent combination parameters derived from the equations of particle motion and temperature. The first combination parameter is the particle-diameter multiplied by the material density, which governs the particle velocity. The second one is the squared particle-diameter multiplied by the material density and specific heat, which affects the particle temperature. In the numerical simulation, the materials of the spray particle selected are WC-12Co, Cu and Ti. The numerical results show that the maximum impact velocity of particle is obtained, when the first combination parameter takes specific value regardless of the material type. Furthermore, it is shown that the particle diameter and its temperature corresponding to the maximum impact velocity can be graphically estimated by using the two combination parameters for any powder-materials normally used for the thermal spray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A p :

Projected area of particle

A s :

Surface area of particle

c d :

Drag coefficient of particle

c p :

Specific heat of gas at constant pressure

C :

Specific heat of the particle

d p :

Particle diameter

\( d^{ * }_{{\text{p}}} \) :

Particle diameter at maximum impact-velocity

f prop :

Correction factor for thermal boundary-layer

k g :

Thermal conductivity of gas

m p :

Mass of particle

M g :

Gas Mach number

M p :

Particle Mach number

N u :

Nusselt number

P r :

Prandtl number of gas

Re p :

Particle Reynolds number

T f :

Film temperature

T g :

Gas temperature

T p :

Particle temperature

\( T^{ * }_{{\text{p}}} \) :

Particle temperature at maximum impact-velocity

u g :

Gas velocity

u p :

Particle velocity

u pi :

Particle impact-velocity

\( u^{ * }_{{{\text{pi}}}} \) :

Maximum particle impact-velocity

x :

Axial distance along center line from nozzle exit

α:

Heat transfer coefficient

γ:

Specific heat ratio

μg :

Gas viscosity

ρg :

Gas density

ρp :

Particle density

References

  1. T. Stoltenhoff, H. Kreye, H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Thermal Spray Technol., Vol 11 (No. 4), 2002, p 542-550

    Article  CAS  Google Scholar 

  2. T. Marrocco, D.G. McCartney, P.H. Shipway, A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Thermal Spray Technol., Vol 15 (No. 2), 2006, p 263-272

    Article  CAS  Google Scholar 

  3. M. Karimi, A. Fartaj, G. Rankin, D. Vanderzwet, W. Birtch, J. Villafuerte, Numerical Simulation of the Cold Gas Dynamic Spray Process, J. Thermal Spray Technol., Vol 15 (No. 4), 2006, p 518-523

    Article  CAS  Google Scholar 

  4. W.-Y. Li, C.-J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Thermal Spray Technol., Vol 14 (No. 3), 2005, p 391-396

    Article  CAS  Google Scholar 

  5. R.C. Dykhuizen and R.A. Neiser, Optimizing the Cold Spray Process, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Eds., May 5-8, 2003 (Orlando, FL, USA) ASM International, Materials Park, OH, 2003, p 19-26

  6. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Thermal Spray Technol., Vol 11 (No. 4), 2002, p 496-507

    Article  Google Scholar 

  7. H.C. Yee, Upwind and Symmetric Shock-Capturing Schemes, NASA TM-89464, 1987, 127 pp

  8. M.J. Zucrow, J.D. Hoffman, Gas Dynamics, John Wiley & Sons, NY, (1976) p 160-181

    Google Scholar 

  9. H.D. Kim, K. Matsuo, T. Setoguchi, Investigation on Onset of Shock-Induced Separation, Shock Waves, Vol 6 (No. 5), 1996, p 275-286

    Google Scholar 

  10. A.B. Bailey, J. Hiatt, Sphere Drag Coefficient for a Broad Range of Mach and Reynolds Numbers, AIAA J., Vol 10 (No. 11), 1972, p 1436-1440

    Article  Google Scholar 

  11. Y.P. Wan, V. Prasad, G.-X. Wang, S. Sampath, J.R. Fincke, Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes, J. Heat Transfer, Vol 121 (No. 3), 1999, p 691-699

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Katanoda.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katanoda, H., Fukuhara, M. & Iino, N. Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray. J Therm Spray Tech 16, 627–633 (2007). https://doi.org/10.1007/s11666-007-9087-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9087-7

Keywords

Navigation