Skip to main content
Log in

Calculation of Particle Parameters for Cold Spraying of Metal-Ceramic Mixtures

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Formation of metal-ceramic composite coatings by cold spray is one of the major directions in the development and application of the technology. As experiments showed, addition of a hard ceramic component into the mixture can shift the transition from substrate erosion to particles adhesion closer to adhesion. This effect may be induced by ceramic particles which not only erode, but also activate the target surface. Velocity and temperature of particles at their high-velocity impact onto the substrate are governing parameters in particles/substrate interaction. These parameters influence both the process of metal particles deposition and the process of erosion/activation of the substrate surface by ceramic particles. Metallic and ceramic particles collide with each other in the gas stream. These collisions can produce preactivation effect on metal particles by cleaning their surface. The level of activation depends on a typical velocity of collision which is the difference between velocities of metal and ceramic particles. Parameters of metallic and ceramic particles in the gas stream are estimated. Calculations show that components of mixtures with fine abrasive particles have greatly different velocities that influences preactivation of metal particles. At the same time, the substrate surface is activated by fine abrasive particles characterized by a high-impact velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a cr :

gas critical velocity

R a :

specific gas constant

T :

gas temperature

T 0 :

gas stagnation temperature

k :

specific heat ratio

a :

gas sound velocity

λ:

velocity coefficient

M :

gas Mach number

S cr :

critical section area

S :

nozzle section area

ρ:

gas density

p :

gas pressure

p 0 :

gas stagnation pressure

δ** :

momentum thickness

c f :

friction coefficient

v :

gas velocity

δ* :

displacement thickness

z :

coordinate along the nozzle axis

δ:

boundary layer thickness

Re z :

Reynolds number based on z

D :

nozzle diameter

μ:

gas viscosity

r :

coordinate along the nozzle radius

G :

gas flow rate

τ:

gas tangential stress

ρm :

gas density at the nozzle axis

T m :

gas temperature at the nozzle axis

λm :

gas velocity coefficient at the nozzle axis

M m :

gas Mach number at the nozzle axis

U :

nozzle perimeter

χ:

effective length

Re D :

Reynolds number based on D

M S :

Mach number after the bow shock

z w :

compressed layer thickness

d p :

particle diameter

m p :

particle mass

v p :

particle velocity

C x :

drag coefficient

S mid :

cross section area of the particle

M p :

particle Mach number

Re p :

particle Reynolds number

\( N_{\text{m}}^{*} \) :

number of activated metal particles

N m :

number of metal particles

N a :

number of abrasive particles

v pm :

metal particle velocity

v pa :

abrasive particle velocity

α :

collision number

G pa :

abrasive particles mass flow rate

d pm :

diameter of metal particles

d pa :

diameter of abrasive particles

P :

probability of collision

I :

number of collisions

References

  1. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. Fomin, Cold Spray Technology, Elsevier Science, Amsterdam, 2007, p.336

    Google Scholar 

  2. T. Schmidt, F. Gaertner, H. Assadi, H. Kreye, Development of a generalized parameter window for cold spray deposition, Acta Materialia, 2006, 54, p 729-742

    Article  CAS  Google Scholar 

  3. M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gad Dynamic-Spray Process, Materials and Design, 2004, 25, p 681-688

    Article  CAS  Google Scholar 

  4. H. Assadi, F. Gaertner, T. Stoltenhoff, H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Materialia, 2003, 51, p 4379-4394

    Article  CAS  Google Scholar 

  5. A. Shkodkin, A. Kashirin, O. Klyuev and T.Buzdygar (2006) Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying. J. Therm. Spray Technol., 15: 382-385

    Article  CAS  ADS  Google Scholar 

  6. R. Maev, V. Leshchynsky, Introduction to low pressure gas dynamic spray: physics & technology, WILEY-VCH, Weinheim, 2008, p 234

    Google Scholar 

  7. Maev, R.G., and Leshchynsky, V.: Air Gas Dynamic Spraying in Powder Mixtures: Theory and Application, Journal of Thermal Spray Technology, 2006, 15, p.198-205

    Article  CAS  ADS  Google Scholar 

  8. Ha Yong Lee, Se Hun Jung, Soo Yong Lee, Young Ho You, Kyung Hyun Ko, Correlation between Al2O3 particles and interface of Al-Al2O3 coatings by cold spray, Applied Surface Science, 2005, 252, p.1891-1898

    Article  CAS  ADS  Google Scholar 

  9. A. Papyrin, V. Kosarev, S. Klinkov, A. Sova, I. Smurov, and P. Bertrand, Investigation of Composites: Metal—Ceramics and Metal—Metal Coatings Produced with Cold Spray Equipment with Ejector, Thermal Spray Crossing Borders: Proceedings of the 2008 International Thermal Spray Conference, E. Lugscheider, Ed., June 2-4, 2008 (Maastricht, Netherlands), ASM International, 2008

  10. Tien-Chien Jen, Longjian Li, Wenzhi Cui, Qinghua Chen, Xinming Zhang Numerical investigations on cold gas dynamic spray process with nano- and microsize particles, International Journal of Heat and Mass Transfer, 2005, 48, p. 4384-4396

    Article  CAS  Google Scholar 

  11. Wen-Ya Li, Hanlin Liao, G. Douchy, C. Coddet, Optimal design of a cold spray nozzle by numerical analysis of particle velocity and experimental validation with 316L stainless steel powder, Materials & Design, 2007, 28, p. 2129-2137

    Article  CAS  Google Scholar 

  12. Wen-Ya Li, Hanlin Liao, Hong-Tao Wang, Chang-Jiu Li, Ga Zhang and C. Coddet Optimal design of a convergent-barrel cold spray nozzle by numerical method, Applied Surface Science, 2006, 253, p. 708-713

    Article  CAS  ADS  Google Scholar 

  13. G.N. Abramovich, Applied Gas Dynamics, Nauka, Moscow, 1976, p 824 (in Russian)

  14. R.C. Dykhuizen, M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7 (2), p. 205-212

    Article  CAS  ADS  Google Scholar 

  15. M. Grujicic, C.L. Zhaoa, C. Tonga, W.S. DeRosset, D. Helfritch, Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process, Materials Science and Engineering, 2004, 368, p. 222-230

    Article  Google Scholar 

  16. G. Schlichting, Theory of Boundary Layer, Nauka, Moscow, 1974, p 742 (in Russian)

  17. M.E. Deich and A.E. Zaryankin, Gas Dynamic of Diffusors and Exhaust Hood, Energiya, Moscow, 1970, p 384 (in Russian)

  18. I.A. Belov, I.P. Ginzburg and L.I. Shoob, Supersonic underexpanded jet impingement upon flat plate, Int. J. Heat and Transfer, 1973, 16, p. 2067-2076

    Article  MATH  Google Scholar 

  19. T. Nakatogawa, M. Hirata and I. Kukita, Desintegration of a supersonic jet impinging normally on a flat plate, J. Spacecraft, 1971, 8(4), p. 410-411

    Article  Google Scholar 

  20. C.B. Henderson, Drag Coefficient of Spheres in Continuum and Rarefied Flows, AIAA J., 1976, 14, p. 707-708

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The study was supported by the Russian Foundation for Basic Research (Grants No 08-01-00108a and No 09-08-00543a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Smurov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinkov, S.V., Kosarev, V.F., Sova, A.A. et al. Calculation of Particle Parameters for Cold Spraying of Metal-Ceramic Mixtures. J Therm Spray Tech 18, 944–956 (2009). https://doi.org/10.1007/s11666-009-9346-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9346-x

Keywords

Navigation