Skip to main content
Log in

Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Numerical study was conducted to investigate the effect of substrate angle on particle impact velocity and normal velocity component in cold gas dynamic spraying by using three-dimensional models based on computational fluid dynamics. It was found that the substrate angle has significant effect on particle impact velocity and normal velocity component. With increasing the substrate angle, the bow shock strength becomes increasingly weak, which results in a gradual rise in particle impact velocity. The distribution of the impact velocity presents a linearly increase along the substrate centerline due to the existence of the substrate angle and the growth rate rises gradually with increasing the substrate angle. Furthermore, the normal velocity component reduces steeply with the increase in substrate angle, which may result in a sharp decrease in deposition efficiency. In addition, the study on the influence of procedure parameters showed that gas pressure, temperature, type, and particle size also play an important role in particle acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.P. Alkimov, V.F. Kosarev, and A.N. Papyrin, A Method of Cold Gas Dynamic Deposition, Dokl. Akad. Nauk. SSSR, 1990, 315(5), p 1062-1065

    Google Scholar 

  2. T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, P.H. Zajchowski, B. Pilsner, R.C. McCune, and K.J. Barnett, Kinetic Spray Coatings, Surf. Coat. Technol., 1999, 111(1), p 62-71

    Article  Google Scholar 

  3. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    CAS  Google Scholar 

  4. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  CAS  Google Scholar 

  5. M. Grujicic, C.-L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    CAS  Google Scholar 

  6. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  CAS  Google Scholar 

  7. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  CAS  Google Scholar 

  8. C.-J. Li, W.-Y. Li, and H.-L. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222

    Article  CAS  ADS  Google Scholar 

  9. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Article  ADS  Google Scholar 

  10. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  CAS  ADS  Google Scholar 

  11. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  CAS  ADS  Google Scholar 

  12. A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, The Features of Cold Spray Nozzle Design, J. Therm. Spray Technol., 2001, 10(2), p 375-381

    Article  ADS  Google Scholar 

  13. W.-Y. Li and C.-J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Therm. Spray Technol., 2005, 14(3), p 391-396

    Article  CAS  ADS  Google Scholar 

  14. W.-Y. Li, H. Liao, H.-T. Wang, C.-J. Li, G. Zhang, and C. Coddet, Optimal Design of Convergent-Barrel Cold Spray Nozzle by Numerical Method, Appl. Surf. Sci., 2006, 253(2), p 708-713

    Article  CAS  ADS  Google Scholar 

  15. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Technol., 2002, 11(4), p 496-507

    Article  ADS  Google Scholar 

  16. J. Pattison, S. Celotto, A. Dhan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454

    Article  CAS  Google Scholar 

  17. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-555

    Article  CAS  ADS  Google Scholar 

  18. S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2009, 18(1), p 110-117

    Article  CAS  ADS  Google Scholar 

  19. T.-C. Jen, L.-J. Li, W.-Z. Cui, Q.-H. Chen, and X.-M. Zhang, Numerical Investigations on Cold Gas Dynamic Spray Process with Nano- and Microsize Particles, Int. J. Heat Mass Trans., 2005, 48(21-22), p 4384-4396

    Article  MATH  CAS  Google Scholar 

  20. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16(5-6), p 634-642

    Article  ADS  Google Scholar 

  21. M. Karimi, A. Fartaj, G. Rankin, D. Vanderzwet, W. Birtch, and J. Villafuerte, Numerical Simulation of the Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2005, 15(4), p 518-523

    Article  ADS  Google Scholar 

  22. B. Samareh, O. Stier, V. Lüthen, and A. Dolatabadi, Assessment of CFD Modeling via Flow Visualization in Cold Spray Process, J. Therm. Spray Technol., 2009, 18(5-6), p 934-943

    Article  CAS  ADS  Google Scholar 

  23. B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modeling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 10(14-15), p 4424-4432

    Article  Google Scholar 

  24. FLUENT Inc., FLUENT 6.2 Manual, Lebanon, NH, 1990

  25. P.C. King and M. Jahedi, Relationship Between Particle Size and Deformation in the Cold Spray Process, Appl. Surf. Sci., 2010, 256(6), p 1735-1738

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by National 973 Basics Science Research Program (No. 2009CB724303) and the National Natural Science Foundation of China (No. 50476075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Yin.

Additional information

This article is an invited paper selected from presentations at the 4th Asian Thermal Spray Conference (ATSC 2009) and has been expanded from the original presentation. ATSC 2009 was held at Nanyang Hotel, Xi’an Jiaotong University, Xi’an, China, October 22-24, 2009, and was chaired by Chang-Jiu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, S., Wang, Xf., Li, Wy. et al. Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD. J Therm Spray Tech 19, 1155–1162 (2010). https://doi.org/10.1007/s11666-010-9510-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9510-3

Keywords

Navigation