Skip to main content
Log in

Study on Process Optimization of Cold Gas Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold gas dynamic spraying is a relatively new spray coating technique capable of depositing a variety of materials without extensive heating. As a result the inherent degradation of the powder particles found during traditional thermal spraying can be avoided. The simplicity of this technique is its most salient feature. High pressure gas is accelerated through a convergent-divergent nozzle up to supersonic velocity. The powder particles are carried to the substrate by the gas and on impact the particles deform at temperatures below their melting point. Computational modeling of thermal spray systems can provide thorough descriptions of the complex, compressible, particle-laden flow, and therefore can be utilized to strengthen understanding and allow technological progress to be made in a more systematic fashion. The computational fluid dynamic approach is adopted in this study to examine the effects of changing the nozzle cross-section shape, particle size and process gas type on the gas flow characteristics through a cold spray nozzle, as well as the spray distribution and particle velocity variation at the exit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2007

    Google Scholar 

  2. R.C. Dykhuizen and M.F. Smith, Gas dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7, p 205-212

    Article  CAS  Google Scholar 

  3. K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scripta Mater., 2005, 53, p 845-850

    Article  CAS  Google Scholar 

  4. W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.J. Li, and C. Coddet, Effect of Standoff Distance on Coating Deposition Characteristics in Cold Spraying, Mater. Des., 2008, 29, p 297-304

    Article  Google Scholar 

  5. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanisms of Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  CAS  Google Scholar 

  6. M. Grujicic, C.L. Zhao, W.S. De Rosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688

    Article  CAS  Google Scholar 

  7. P.C. King, S.H. Zahiri, and M. Jahedi, Focused Ion Beam Micro-Dissection of Cold-Spray Particles, Acta Mater., 2008, 56, p 5617-5626

    Article  CAS  Google Scholar 

  8. B. Gyuyeol, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56, p 4858-4868

    Article  Google Scholar 

  9. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  CAS  Google Scholar 

  10. W.Y. Li and C.J. Li, Optimal Design of a Novel Coldspray Gun Nozzle at Limited Space, J. Therm. Spray Technol., 2005, 14, p 391-396

    Article  CAS  Google Scholar 

  11. W.Y. Li, H.L. Liao, H.T. Wang, C.J. Li, G. Zhang, and C. Coddet, Optimal Design of a Convergent-Barrel Cold Spray Nozzle by Numerical Method, Appl. Surf. Sci., 2006, 253, p 708-713

    Article  CAS  Google Scholar 

  12. W.Y. Li, H.L. Liao, G. Douchy, and C. Coddet, Optimal Design of a Cold Spray Nozzle by Numerical Analysis of Particle Velocity and Experimental Validation with 316L Stainless Steel Powder, Mater. Des., 2007, 28, p 2129-2137

    Article  CAS  Google Scholar 

  13. J. Pattison, S. Celotto, A. Khan, and W. O’Niell, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202, p 1443-1454

    Article  CAS  Google Scholar 

  14. T.C. Jen, L. Li, W. Cui, Q. Chen, and X. Zhang, Numerical Investigations on Cold Gas Dynamic Spray Process With Nano- and Microsize Particles, Heat Mass Transf., 2005, 48, p 4384-4396

    Article  CAS  Google Scholar 

  15. H. Katanoda, M. Fukuhara, and N. Lino, Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray, J. Therm. Spray Technol., 2007, 16, p 627-633

    Article  CAS  Google Scholar 

  16. M. Karimi, A. Fartaj, G. Rankin, D. Vanderzwet, W. Birtch, and J. Villafuerte, Numerical Simulation of the Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2006, 15, p 518-523

    Article  CAS  Google Scholar 

  17. T.S. Price, P.H. Shipway, D.G. McCartney, E. Calla, and D. Zhang, A Method for Characterizing the Degree of Inter-particle Bond Formation in Cold Sprayed Coatings, J. Therm. Spray Technol., 2007, 16, p 566

    Article  CAS  Google Scholar 

  18. J.P. Vandoormaal, G.D. Raithby, and B.H. McDonald, The Segregated Approach to Predicting Viscous Compressible Fluid Flows, J. Turbomach., 1987, 109, p 268-277

    Article  Google Scholar 

  19. M. Peric, Analysis of Pressure-Velocity Coupling on Nonorthogonal Grids, Numer. Heat Transf. B, 1990, 17, p 63-82

    Article  Google Scholar 

  20. G.D. Raithby and G.E. Schneider, Numerical Solution of Problems in Incompressible Fluid Flow, Numer. Heat Transf., 1979, 2, p 417-440

    Article  Google Scholar 

  21. T.H. Shih, W.W. Liou, A. Shabbir, and J. Zhu, New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation, Comput. Fluids, 1995, 24, p 227-238

    Article  Google Scholar 

  22. C. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows With Droplets and Particles, CRC Press, Boca Raton, 1998

    Google Scholar 

  23. C.B. Henderson, Drag Coefficients of Spheres in Continuum and Rarefied Flows, AIAA J, 1976, 14, p 707-708

    Article  Google Scholar 

  24. M. Sun, T. Saito, K. Takayama, and H. Tanno, Unsteady Drag on a Sphere By Shock Wave Loading, Shock waves, 2004, 14, p 3-9

    Article  Google Scholar 

  25. T. Saito, M. Saba, M. Sun, and K. Takayama, The Effect of an Unsteady Drag Force on a Structure of a Non-Equilibrium Region Behind a Shock Wave in a Gas-Particle Mixture, Shock Waves, 2007, 17, p 255-262

    Article  Google Scholar 

  26. D. Zhang, D.G. McCartney, and P.H. Shipway, Cold gas Dynamic Spraying of Aluminum: The Role of Substrate Characteristics in Deposit Formation, J. Therm. Spray Technol., 2005, 14, p 109-116

    Article  Google Scholar 

  27. T.S. Price, “Cold gas dynamic spraying of titanium coatings,” PhD Thesis, University of Nottingham, 2008.

  28. L. Zhao, M. Maurer, F. Fischer, and E. Lugscheider, Surf. Coat. Technol., 2004, 185, p 160-165

    Article  CAS  Google Scholar 

  29. M. Tucker, “Approximate Turbulent boundary-dayer development in plane compressible flow along thermally insulated surfaces with application to supersonic-tunnel contour correction,” NACA TN 2045, 1950.

  30. J.C. Sivells, Aerodynamic Design of Axisymmetric Hypersonic Wind-Tunnel Nozzles, J. Spacecr. Rocket., 1970, 7(11), p 1291-1299

    Article  Google Scholar 

  31. B. Jodoin, M. Gindrat, J.-L. Dorier, CH. Hollenstein, M. Loch, and G. Barbezat, Modelling and Diagnostics of a Supersonic DC Plasma Jet Expanding at Low Pressure, Proceedings of ITSC 2002 International Thermal Spray Conference, March 4-6 2002, Essen, Germany.

  32. J.D. Anderson, Fundamentals of Aerodynamics, 4th ed., McGraw-Hill, New York, 2007, p 637

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Zhiwei Hu (Reginald Platt Lecturer in Civil Aviation, University of Southampton) for providing a program for computing the method of characteristics. The authors gratefully acknowledge the financial support from the EC FP7 Simuspray project (Grant No. 230715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabbara, H., Gu, S., McCartney, D.G. et al. Study on Process Optimization of Cold Gas Spraying. J Therm Spray Tech 20, 608–620 (2011). https://doi.org/10.1007/s11666-010-9564-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9564-2

Keywords

Navigation