Skip to main content
Log in

Numerical Studies on the Effects of Stagnation Pressure and Temperature on Supersonic Flow Characteristics in Cold Spray Applications

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Low-temperature particle coating requires supersonic flow. The characteristics of this supersonic flow are investigated using a nonlinear turbulence model. The low-temperature, supersonic particle deposition technique is valuable because its rapid and dense coating minimizes thermal damage to both particles and substrate. It has excellent potential for industrial production of low-cost thin films. Stagnation pressures and temperatures of the supersonic nozzle range from 4 < P o < 45 bar and 300 < T o < 1500 K, respectively. The exit Mach number, M e, and velocity, V e, range from 0.6 to 3.5 and 200 to 1400 m/s, respectively. The effects of stagnation pressure (P o) and stagnation temperature (T o) on supersonic flow impinging upon a substrate are described. In other words, the energy loss through shockwaves and shear interactions between the streaming jet and surrounding gas are quantified as functions of P o and T o. P o is decreased because of friction (loss ranges from 40 to 60%) while T o is nearly conserved. To realize the nozzle exit condition of P e = P amb, we demonstrate that P o should be adjusted rather than T o, as T o has little effect on exit pressures. On the other hand, T o is more influential than P o for varying the exit velocity. Various nozzle geometries yielding different flow characteristics, and hence, different operating conditions and coating performances are investigated. The corresponding supersonic flows for three types of nozzles (under-, correctly , and over-expanded) are simulated, and their correctly expanded (or shock-free) operating conditions are identified. Diamond shock structures induced by the pressure imbalance between the exiting gas and the surrounding atmosphere are captured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.C. Dykhuizen, M.F. Smith, D.L. Gilmorew, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Tech., 1999, 8(4), p 559-564

    Article  CAS  Google Scholar 

  2. A.P. Alkhimov, S.V. Klinkov, V.F. Kosarev, and A.N. Papyrin, Gas-Dynamic Spraying Study of a Plane Supersonic Two-Phase Jet, J. Appl. Mech. Tech. Phys., 2007, 38(2), p 324-330

    Article  Google Scholar 

  3. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, M.F. Smith, and T.J. Roemer, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Tech., 1999, 8(4), p 576-582

    Article  CAS  Google Scholar 

  4. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154(2-3), p 237-252

    Article  Google Scholar 

  5. J.A. Hearley, J.A. Little, and A.J. Sturgeon, The Effect of Spray Parameters on the Properties of High Velocity Oxy-Fuel NiAl Intermetallic Coatings, Surf. Coat. Technol., 2000, 123, p 210-218

    Article  CAS  Google Scholar 

  6. L. Ajdelsztajn, B. Jodoin, G.E. Kim, and J.M. Schoenung, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall. Mater. Trans. A, 2005, 36A, p 657-666

    Article  CAS  Google Scholar 

  7. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Tech., 2008, 17(2), p 181-198

    Article  CAS  Google Scholar 

  8. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Tech., 2002, 11(4), p 496-507

    Article  Google Scholar 

  9. A.P. Alkhimov, S.V. Klkinkov, V.F. Kosarev, and A.N. Papyrin, Gas-Dynamic Spraying Study of a Plane Supersonic Two-Phase Jet, J. Appl. Mech. Technol. Phys., 1997, 38(2), p 324-330

    Article  CAS  Google Scholar 

  10. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin, Method of Cold Gas Dynamic Spraying, Sov. Phys. Dokl., 1990, 35(12), p 1047-1049

    Google Scholar 

  11. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  CAS  Google Scholar 

  12. J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, and H. Hallen, Kinetic Powder Compaction Applying the Cold Spray Process A Study on Parameters, ITSC Proc., 2001, p 417-422

  13. C.J. Li and W.Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2-3), p 278-283

    Article  CAS  Google Scholar 

  14. R.C. Dykhuizen and R.A. Neiser, ITSC Proc., 2003, p 19-26

  15. W.Y. Li and C.J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Therm. Spray Tech., 2005, 14(3), p 391-396

    Article  CAS  Google Scholar 

  16. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray. Process: The Effects of Substrate Location and Shape, J. Therm. Spray Tech., 2007, 16(5-6), p 634-642

    Article  Google Scholar 

  17. H. Takana, K. Ogawa, T. Shoji, and H. Nishiyama, Computational Simulation of Cold Spray Process Assisted by Electrostatic Force, Powder Technol., 2008, 185(116-123), p 116-123

    Article  CAS  Google Scholar 

  18. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window For Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  CAS  Google Scholar 

  19. J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89(6), p 1834-1839

    Article  CAS  Google Scholar 

  20. F.F. Grinstein, Vortex Dynamics and Entrainment in Rectangular Free Jets, J. Fluid Mech., 2001, 437, p 69-101

    Article  CAS  Google Scholar 

  21. M.T. Landahl, Wave Mechanics of Breakdown, J. Fluid Mech., 1972, 56, p 775-802

    Article  Google Scholar 

  22. T. Herbert, Secondary Instability of Boundary Layers, Annu. Rev. Fluid Mech., 1988, 20, p 487-526

    Article  Google Scholar 

  23. B.J. Bayly, S.A. Orszag, and T. Herbert, Instability Mechanisms in Shear-Flow Transition, Annu. Rev. Fluid Mech., 1988, 20, p 359-391

    Article  Google Scholar 

  24. K. Itoh, Y. Nakamura, and Y. Kukita, Free-Surface Shear Layer Instabilities on a High-Speed Liquid Jet, Fusion Technol., 2000, 37, p 74-88

    CAS  Google Scholar 

  25. F.U.s. Guide, Fluent User’s Guide, 2008

  26. W.Y. Li, C.-J. Liu, C.X. Wang, and H.S. Bang, Measurement and Numerical Simulation of Particle Velocity in Cold Spraying, J. Therm. Spray Tech., 2006, 15(4), p 559-562

    Article  Google Scholar 

  27. V.I. Zapryagaev, A.N. Kudryavsev, A.V. Lokotok, A.V. Solotchin, A.A. Pavlov, and A. Hadjadj, An Experimental and Numerical Study of a Supersonic-Jet-Shock-Wave Structure, Proceedings of the XI International Conference on the Methods of Aerophysical Research, Vol 2, 2002, p 187-191

  28. N.J. Dam, M. Rodenburg, R.A.L. Tolboom, G.G.M. Stoffels, P.M. Huisman-Kleinherenbrink, and J.J. ter Meulen, Imaging of an Underexpanded Nozzle Flow by UV Laser Rayleigh Scattering, Exp. Fluids, 1998, 24(2), p 93-101

    Article  Google Scholar 

  29. J.D. Anderson and J. David, Computational Fluid Dynamics, McGraw-Hill, 1995

  30. J.J. Park, M.W. Lee, S.S. Yoon, H.Y. Kim, S.C. James, S.D. Heister, S. Chandra, W.H. Yoon, D.S. Park, and J.H. Ryu, Supersonic Nozzle Flow Simulations for Particle Coating Applications: Effects of Shockwaves, Nozzle Geometry, Chamber Pressure, and Substrate Location Upon Flow Characteristics, J. Therm. Spray Tech., 2010, p 1-9

Download references

Acknowledgments

This study was supported by the New & Renewable Energy Program through the Korea Institute of Energy Technology Evaluation and Planning (KETEP, 2010-3010010011) grant and Technology Innovation Program (KETEP, 10035397-2010-01). The corresponding author also acknowledges that a partial support was made for this project by the NRF Grant of Korea (2010-0010217 and 2011-0007182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam S. Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MW., Park, JJ., Kim, DY. et al. Numerical Studies on the Effects of Stagnation Pressure and Temperature on Supersonic Flow Characteristics in Cold Spray Applications. J Therm Spray Tech 20, 1085–1097 (2011). https://doi.org/10.1007/s11666-011-9641-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9641-1

Keywords

Navigation