Skip to main content
Log in

A Numerical Investigation of the Cold Spray Process Using Underexpanded and Overexpanded Jets

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The impact velocity of particles during the cold spray process is crucial to the optimisation of coating quality and spraying costs. In the present investigation, both underexpanded and overexpanded impinging jets are employed to accelerate Aluminium particles towards a substrate. The impact velocity and angle statistics are generated by injecting polydisperse particles into the jet and the particle dynamics are characterised using the velocity and trajectories of the particles. The optimum particle size corresponding to the maximum impact speed is recast in terms of the Stokes number and shown to have a value of approximately one. Finally, a normal shock model is proposed which may be employed to estimate the particle impact speed using the nozzle exit conditions. It is shown that owing to artificial viscosity associated with the total variation diminishing scheme, this model tends to underestimate the speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

D :

nozzle diameter, m

θ:

nozzle divergence angle

d p :

particle diameter, m

d m :

mean particle diameter, m

m :

particle mass, kg

A :

particle cross-sectional area, m2

σ:

standard deviation

Δt :

time step

Δ:

grid size in r and z direction

z :

jet axis

r :

radial axis

u :

axial velocity

v :

radial velocity

P :

pressure

ρ:

density

T :

temperature

E :

internal energy

t :

time

Z :

stand off distance

L :

computational domain length

τ:

shear stress terms

q :

heat flux terms

μ:

dynamic viscosity

κ:

thermal conductivity

τA :

particle aerodynamic response time

τB :

fluid time scale

PR:

pressure ratio

C D :

drag coefficient

St :

Stokes number

Ma :

Mach number

Co :

Courant number

Re :

Reynolds number

R :

gas constant

γ:

specific heat ratio

0:

stagnation conditions

k:

particle parcel index

t:

nozzle throat

e:

nozzle exit

a:

ambient conditions

p:

particle phase

s:

post shock conditions

References

  1. A.P. Alkimov, V.F. Kosarev, N.I. Nesterovich, and A.N. Papyrin, Method of Cold Spraying, Russian Patent No. 1618778, 8/9/1990

  2. F. White, Fluid mechanics, 4th ed., Springer, New York, 1999

    Google Scholar 

  3. T.-C. Jen, L. Li, W. Cui, Q. Chen, and X. Zhang, Numerical Investigation on Cold Gas Dynamic Spray Process with Nano- and Microsize Particles, Int. J. Heat Mass Transfer, 2005, 48, p 4384-4396

    Article  CAS  Google Scholar 

  4. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550

    Article  CAS  Google Scholar 

  5. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16(5-6), p 634-642

    Article  Google Scholar 

  6. H. Katanoda, M. Fukuhara, and N. Lino, Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray, J. Therm. Spray Technol., 2007, 16(5-6), p 627-633

    Article  CAS  Google Scholar 

  7. H. Tabbara, S. Gu, D.G. McCartney, T.S. Price, and P.H. Shipway, Study of Process Optimisation of Cold Gas Spraying, J. Therm. Spray Technol., 2011, 20(3), p 608-620

    Article  Google Scholar 

  8. S.V. Klinkov, V.F. Kosarev, and M. Rein, Cold Spray Deposition: Significance of Particle Impact Phenomena, Aerosp. Sci. Technol., 2005, 9, p 582-591

    Article  CAS  Google Scholar 

  9. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-227

    Article  CAS  Google Scholar 

  10. R. Nickel, K. Bobzin, E. Lugscheider, D. Parkot, W. Varava, H. Olivier, and X. Luo, Numerical Studies of the Application of Shock Tube Technology for Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 720-735

    Article  Google Scholar 

  11. A. Krothapalli, E. Rajkuperan, and L. Lourenco, Flow Field and Noise Characteristics of a Supersonic Impinging Jet, J. Fluid Mech., 1999, 392, p 155-181

    Article  Google Scholar 

  12. A. Krothapalli, G. Buzyna, and L. Lourenco, Streamwise Vorticies in an Underexpanded Axisymmetric Jet, Phys. Fluids, 1991, 3, p 1848-1864

    Google Scholar 

  13. H.C. Yee, Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications, J. Comput. Phys., 1987, 68, p 151-179

    Article  Google Scholar 

  14. M. Sommerfeld, The Structure of Particle-Laden, Underexpanded Free Jets, Shock Waves, 1994, 3, p 299-311

    Article  Google Scholar 

  15. S.K. Richards, X. Zhang, X.X. Chen, and P.A. Nelson, The Evaluation of Non-Reflecting Boundary Conditions for Duct Acoustic Computation, J. Sound Vib., 2004, 270, p 539-557

    Article  Google Scholar 

  16. K.W. Thompson, Time Dependent Boundary Conditions for Hyperbolic Systems: I, J. Comput. Phys., 1987, 68, p 1-24

    Article  Google Scholar 

  17. K.W. Thompson, Time Dependent Boundary Conditions for Hyperbolic Systems: II, J. Comput. Phys., 1990, 89, p 439-461

    Article  Google Scholar 

  18. D.J. Carlson and R.F. Hoglund, Particle Drag and Heat Transfer in Rocket Nozzles, AIAA J., 1973, 11, p 259-264

    Article  Google Scholar 

  19. J. Xu, C. Lin, J. Sha, and K. Zhan, A PIV Study and Numerical Simulation of Overexpanded Supersonic Impinging Free Jet, 14th AIAA/AMI Space Planes and Hypersonic Systems and Technologies Conference, 2006

  20. P.J. Lamont and B.L. Hunt, The Impingment of Underexpanded, Axisymmetric Jets on Perpendicular and Inclined Flat Plates, J. Fluid Mech., 1980, 100(3), p 471-511

    Article  Google Scholar 

  21. J.N. Chung and T.R. Troutt, Simulation of Particle Dispersion in an Axisymmetric Jet, J. Fluid Mech., 1988, 186, p 199-222

    Article  CAS  Google Scholar 

  22. E.F. Toro, Riemann Solver and Numerical Methods for Fluid Dynamics, Springer, New York, 1999

    Google Scholar 

  23. D. Mitchell, D. Honnery, and J. Soria, The Influence of Shockwave Induced Velocity Gradients on the Correlation Function, Proceedings of the 8th International Symposium on Particle Image Velocimetry, 2009

  24. J.C. Carling and B.L. Hunt, The Near Wall Jet of a Normally Impinging, Uniform Axisymmetric Supersonic Jet, J. Fluid Mech., 1974, 66(1), p 159-176

    Article  Google Scholar 

Download references

Acknowledgments

The correspondence author would like to thanks the ARC Center of Excellence for Design in Light Metals and the CSIRO Direct Manufacturing Center for their funding of this research. The outcomes presented in the article could not have been achieved without their support and encouragement. The principal author would also like to acknowledge the contributions of Dr. Chong Yau Wong in proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Muddle, B., Jahedi, M. et al. A Numerical Investigation of the Cold Spray Process Using Underexpanded and Overexpanded Jets. J Therm Spray Tech 21, 108–120 (2012). https://doi.org/10.1007/s11666-011-9691-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9691-4

Keywords

Navigation