Skip to main content
Log in

Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The adhesion mechanism of deposit/substrate interface prepared by the cold spray method is not fully understood at present. It seems that the adhesion strength is mainly determined by the mechanical (including the plastic deformation of particle and substrate) and thermal interaction between particle and substrate when the particles impact onto the substrate with a high velocity. In order to understand the adhesion mechanism, a novel adhesive strength test was developed to measure the higher bonding strength of cold sprayed coatings in this study. The method breaks through the limits imposed by glue strength in the conventional adhesive strength test, and it can be used to measure the coatings with a higher adhesive strength. The particle velocity was obtained with DPV-2000 measurement and CFD simulation. The relationships between the adhesion strength of deposits/substrate interface and particle velocity were discussed. The results show that stronger adhesion strength can be obtained with the increase of particle velocity. There are two available ways to improve the adhesion strength. One is to increase the temperature of working gas, and another is to employ helium gas as the working gas instead of nitrogen gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Richer, B. Jodoin, K. Taylor, E. Sansoucy, M. Johnson, and L. Ajdelsztajn, Effect of particle geometry and substrate preparation in cold spray, Thermal Spray 2005: Explore Its Surfacing Potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), DVS-Verlag, Düsseldorf, Germany, 2005, p 193-198

  2. W.-Y. Li, C.-j. Li, and H. Liao, Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating, J. Therm. Spray Technol., 2006, 15(2), p 206-211

    Article  CAS  Google Scholar 

  3. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550

    Article  CAS  Google Scholar 

  4. R.C. McCune, W.T. Donlon, O.O. Popoola, and E.L. Cartwright, Characterization of Copper Layers Produced by Cold Gas-Dynamic Spraying, J. Therm. Spray Technol., 2000, 9(1), p 73-82

    Article  CAS  Google Scholar 

  5. E. Calla, D.G. McCartney, and P.H. Shipway, Deposition of copper by cold gas dynamic spraying: an investigation of dependence of microstructure and properties of the deposits on the spraying conditions, Thermal Spray 2004: Advances in Technology and Applications, D. von Hofe, Ed., May 10-12, 2004 (Osaka, Japan), ASM International, 2004, p 382-387

  6. T. Xiong, Z. Bao, T. Li, and Z. Li, Study on Cold-Sprayed Copper Coating’s Properties and Optimizing Parameters for the Spraying Process, Thermal Spray 2005: Explore Its Surfacing Potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), DVS-Verlag, Düsseldorf, Germany, 2005, p 178-184

  7. R. Morgan, P. Fox, J. Pattison, C. Sutcliffe, and W. O’Neill, Analysis of Cold Gas Dynamically Sprayed Aluminum Deposits, Mater. Lett., 2004, 58(7-8), p 1317-1320

    Article  CAS  Google Scholar 

  8. M.K. Decker, R.A. Neiser, D. Gilmore, and H.D. Tran, Microstructure and Properties of Cold Spray Nickel, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore), ASM International, 2001, p 433-439

  9. F. Raletz, G. Ezo’o, M. Vardelle, and M. Ducos, Characterization of Cold-Sprayed Nickel-Base Coatings, Thermal Spray 2004: Advances in Technology and Applications, D. von Hofe, Ed., May 10-12, 2004 (Osaka, Japan), ASM International, 2004, p 344-349

  10. W.-Y. Li, C.-J. Li, and G.-J. Yang, Effect of Impact-Induced Melting on Interface Microstructure and Bonding of Cold-Sprayed Zinc Coating, Appl. Surf. Sci., 2010, 257(5), p 1516-1523

    Article  CAS  Google Scholar 

  11. D. Morelli, A. Elmoursi, T. Vansteenksite, D. Gorkiewicz, and B. Gillispie, Kinetic Spray of Aluminum Metal Matrix Composites for Thermal Management Applications, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5-8, 2003 (Orlando, FL), ASM International, 2003, p 85-90

  12. J. Karthikeyan, C.M. Kay, and J. Lindemann, Cold Sprayed Nanostructured, WC-Co, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore), ASM International, 2001, p 383-387

  13. G.-J. Yang, C.-J. Li, F. Han, W.-Y. Li, and A. Ohmori, Low Temperature Deposition and Characterization of TIO2 Photocatalytic Film Through Cold Spray, Appl. Surf. Sci., 2008, 54(13), p 3979-3982

    Article  Google Scholar 

  14. C.-J. Li, W.-Y. Li, Y.-Y. Wang, G.-J. Yang, and H. Fukanuma, A Theoretical Model for Prediction of Deposition Efficiency in Cold Spraying, Thin Solid Films, 2005, 489, p 79-85

    Article  CAS  Google Scholar 

  15. N. Papyrin, S. V. Klinkov, and V. F. Kosarev, Modeling of Particle-Substrate Adhesive Interaction Under the Cold Spray Process, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5-8, 2003 (Orlando, FL), ASM International, Vol. 1, 2003, p 27-35

  16. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  CAS  Google Scholar 

  17. D. Zhang, P.H. Shipway, and D.G. McCartney, Cold Gas Dynamic Spraying of Aluminum: The Role of Substrate Characteristics in Deposit Formation, J. Therm. Spray Technol., 2005, 14(1), p 109-116

    Article  Google Scholar 

  18. F. Gärtner, C. Borchers, T. Stoltenhoff, H. Kreye, and H. Assadi, Numerical and Microstructural Investigations of the in Cold Spraying, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5-8, 2003 (Orlando, FL), ASM International, Vol. 1, p 1-8

  19. Li. Chang-Jiu, Li. Wen-Ya, and Hanlin. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222

    Article  Google Scholar 

  20. N. Papyrin, Albuquerque, S. V. Klinkov, and V. F. Kosarev, Effect of the Substrate Surface Activation on the Process of Cold Spray Coating Formation, Thermal Spray 2005: Explore Its Surfacing Potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), DVS-Verlag, Düsseldorf, Germany, p 145-150

  21. T. Stoltenhoff, J. Voyer, and H. Kreye, Cold spray-state of the art and applicability, Thermal Spray 2002: International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4-6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweißen, p 366-374

  22. H. Mäkinen, J. Lagerbom, and P. Vuoristo, Adhesion of Cold Sprayed Coatings: Effect of Powder, Substrate, and Heat Treatment, Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., May 14-16, 2007 (Beijing, China), ASM International, 2007, p 31-36

  23. M. Grujicica, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    Article  Google Scholar 

  24. S. Kumar, G. Bae, and C. Lee, Deposition Characteristics of Copper Particles on Roughened Substrates Through Kinetic Spraying, Appl. Surf. Sci., 2009, 255(6), p 3472-3479

    Article  CAS  Google Scholar 

  25. M. Grujicic, C.L. Zhao, W.S. Derosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688

    Article  CAS  Google Scholar 

  26. S. Guetta, M.H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, J. Therm. Spray Technol., 2009, 18(3), p 331-342

    Article  Google Scholar 

  27. W.-Y. Li and C.-J. Li, Optimization of Spray Conditions in Cold Spraying Based on the Numerical Analysis of Particle Velocity, Trans. Nonferrous Met. Soc. China, 2004, 14(S2), p 43-48

    Google Scholar 

  28. Ansys Inc., Fluent 6.3 User’s Guider, NH, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Huang.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Fukanuma, H. Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits. J Therm Spray Tech 21, 541–549 (2012). https://doi.org/10.1007/s11666-011-9707-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9707-0

Keywords

Navigation