Skip to main content
Log in

Impact Conditions for Cold Spraying of Hard Metallic Glasses

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

As compared to thermal spray techniques, cold spraying allows to retain metastable phases of the feedstock material like amorphous structures, due to lower process gas temperatures. Compared to crystalline metals, metallic glasses are brittle at ambient temperature but viscous at higher temperatures. Therefore, cold spray parameters must be optimized for conditions that allow softening of the amorphous spray material for successfully producing coatings. For this study, a FeCoCrMoBC metallic glass was used that in comparison to others offers advantages with respect to higher hardness, less costly feedstock powder, and minimum reactivity with the environment. Necessary impact conditions were investigated to meet the window of deposition in cold gas spraying. According to calculations and cold spray experiments, neither the glass transition temperature T g nor the melting temperature T m can describe required conditions for bonding. Thus, a so called softening temperature between the glass temperature and the melting temperature had to be defined to calculate the critical velocity of metallic glasses. With respect to the bonding mechanism, impact morphologies could prove that a transition to viscous flow gets more prominent for harsher spray conditions. By sufficiently exceeding the critical condition for bonding, coatings with rather dense microstructures can be processed at deposition efficiencies of about 70%. The coatings have a hardness of 1100 HV 0.3, but the results also demonstrate that further work is still needed to explore the full potential for bulk metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Fritsch, Amorphous and Liquid Metals, Naturwissenschaften, 1988, 75, p 551-558

    Article  CAS  Google Scholar 

  2. J. Schroers, The Superplastic Forming of Bulk Metallic Glasses, J. Manag., 2005, 57, p 35-39

    CAS  Google Scholar 

  3. J. Schroers and N. Paton, Amorphous Metal alloys Form Like Plastics, Adv. Mater. Process., 2006, 164, p 61-63

    CAS  Google Scholar 

  4. A.L. Greer, Confusion by Design, Nature, 1993, 366, p 303-304

    Article  Google Scholar 

  5. A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., 2000, 48, p 279-306

    Article  CAS  Google Scholar 

  6. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  CAS  Google Scholar 

  7. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  CAS  Google Scholar 

  8. J.F. Löffler, Bulk Metallic Glasses, Intermetallics, 2003, 11, p 529-540

    Article  Google Scholar 

  9. Y.H. Liu, C.T. Liu, W.H. Wang, A. Inoue, T. Sakurai, and M.W. Chen, Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength, Phys. Rev. Lett., 2009, 103, p 065504-1-065504-4

    Google Scholar 

  10. F. Spaepen, Homogeneous Flow of Metallic Glasses: A Free Volume Perspective, Scr. Mater., 2006, 54, p 363-367

    Article  CAS  Google Scholar 

  11. R. Huang, Z. Suo, J.H. Prevost, and W.D. Nix, Inhomogeneous Deformation in Metallic Glasses, J. Mech. Phys. Solids, 2002, 50, p 1011-1027

    Article  Google Scholar 

  12. F. Shimizu, S. Ogata, and J. Li, Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations, Mater. Trans., 2007, 48, p 2923-2927

    Article  CAS  Google Scholar 

  13. Y. Zhang and A.L. Greer, Thickness of Shear Bands in Metallic Glasses, Appl. Phys. Lett., 2006, 89, p 0719071-0719073

    Google Scholar 

  14. K. Georgarakis, M. Aljerf, Y. Li, A. LeMoulec, F. Charlot, A.R. Yavari, K. Chornokhvostenko, E. Tabachnikova, G.A. Evangelakis, D.B. Miracle, A.L. Greer, and T. Zhang, Shear Band Melting and Serrated Flow in Metallic Glasses, Appl. Phys. Lett., 2008, 93, p 0319071-0319073

    Article  Google Scholar 

  15. J.F. Lewandowski and A.L. Greer, Temperature Rise at Shear Bands in Metallic Glasses, Nat. Mater., 2006, 5, p 15-18

    Article  CAS  Google Scholar 

  16. H. Choi, S. Yoon, G. Kim, H. Jo, and C. Lee, Phase Evolutions of Bulk Amorphous NiTiZrSiSn Feedstock During Thermal and Kinetic Spraying Processes, Scr. Mater., 2005, 53, p 125-130

    Article  CAS  Google Scholar 

  17. S. Yoon, H.J. Kim, and C. Lee, Deposition Behavior of Bulk Amorphous NiTiZrSiSn According to the Kinetic and Thermal Energy Levels in the Kinetic Spraying Process, Surf. Coat. Technol., 2006, 200, p 6022-6029

    Article  CAS  Google Scholar 

  18. S. Yoon, C. Lee, H. Choi, H. Kim, and J. Bae, Impacting Behavior of Bulk Metallic Glass Powder at an Abnormally High Strain Rate During Kinetic Spraying, Mater. Sci. Eng., 2007, A 449-451, p 911-915

    Google Scholar 

  19. S. Yoon, J. Kim, G. Bae, B. Kim, and C. Lee, Formation of Coating and Tribological Behavior of Kinetic Sprayed Fe-Based Bulk Metallic Glass, J. Alloys Compd., 2011, 509, p 347-353

    Article  CAS  Google Scholar 

  20. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18, p 794-808

    Article  Google Scholar 

  21. T. Schmidt, F. Gärtner, and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Technol., 2006, 15, p 488-494

    Article  CAS  Google Scholar 

  22. A.S. Argon, Plastic Deformation in Metallic Glasses, Acta Metall., 1979, 27, p 47-58

    Article  CAS  Google Scholar 

  23. P. Wadhwa, J. Heinrich, and R. Busch, Processing of Copper Fiber-Reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 Bulk Metallic Glass Composites, Scr. Mater., 2007, 56, p 73-76

    Article  CAS  Google Scholar 

  24. R. Busch, The Thermophysical Properties of Bulk Metallic Glass-Forming Liquids, J. Manang., 2000, 52, p 39-42

    CAS  Google Scholar 

  25. J. Schroers, Y. Wu, R. Busch, and W.L. Johnson, Transition from Nucleation Controlled to Growth Controlled Crystallization in Pd43Ni10Cu27P20 Melts, Acta Mater., 2001, 49, p 2773-2781

    Article  CAS  Google Scholar 

  26. S. Yoon, G. Bae, Y. Xiong, S. Kumar, K. Kang, J.-J. Kim, and C. Lee, Strain-Enhanced Nanocrystallization of a CuNiTiZr Bulk Metallic Glass Coating by a Kinetic Spraying Process, Acta Mater., 2009, 57, p 6191-6199

    Article  CAS  Google Scholar 

  27. S. Krebs, Warm Spraying of Amorphous and Nano-Crystalline FE-Base Alloys, Diploma Thesis, Helmut-Schmidt-University, 2007

Download references

Acknowledgements

The authors would like to thank the staff for support in the presented study, in alphabetical order Thomas Breckwoldt, Herbert Hübner, Dieter Müller, Norbert Németh, Camilla Schulze, Matthias Schulze and Uwe Wagener.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. List.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

List, A., Gärtner, F., Schmidt, T. et al. Impact Conditions for Cold Spraying of Hard Metallic Glasses. J Therm Spray Tech 21, 531–540 (2012). https://doi.org/10.1007/s11666-012-9750-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9750-5

Keywords

Navigation