Skip to main content
Log in

Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. K. Steffens and H. Wihelm, Next Engine Generation: Materials, Surface Technology, Manufacturing Processes, What Comes After 2000? MTU Aero Engines GmbH, Munchen, Germany, 2000, (Internet edition: http://www.mtu.de)

  2. J.K. Sutter, K. Miyoshi, C. Bowman, S.K. Naik, K. Ma, R. Sinatra, R. Cupp, R. Horan, and G. Leissler, Erosion Coatings for Polymer Matrix Composites in Propulsion Applications, High Perform. Polym., 2003, 15, p 421-440

    Article  Google Scholar 

  3. R. Vaβen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1, p 351-361

    Google Scholar 

  4. J. Wang, S.X. Bai, L. Shun, and C.R. Zhang, Study on Lanthanum Zirconate Thermal Barrier Coating on Mo Substrate, Rare Met. Mater. Eng., 2010, 39, p 824-827

    Google Scholar 

  5. M. Ivosevic, R. Knight, S.R. Kalidindi, G.R. Palmese, and J.K. Sutter, Adhensive/Cohesive Properties of Thermally Sprayed Functionally Graded Coatings for Polymer Matrix Composites, J. Therm. Spray Technol., 2005, 14, p 45-51

    Article  Google Scholar 

  6. G. Sun, X. He, J. Jiang, and Y. Sun, Parametric Study of Al and Al2O3 Ceramic Coatings Deposited by Air Plasma Spray onto Polymer Substrate, Appl. Surf. Sci., 2011, 257, p 7864-7870

    Article  Google Scholar 

  7. X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84, p 2086-2090

    Article  Google Scholar 

  8. X.H. Zhong, Z.H. Xu, Y.F. Zhang, J.F. Zhang, and X.Q. Cao, Phase Stability and Thermophysical Properties of Neodymium Cerium Composite Oxide, J. Alloys Compd., 2009, 469, p 82-88

    Article  Google Scholar 

  9. R. Lupoi and W. O’Neill, Deposition of Metallic Coatings on Polymer Surfaces Using Cold Spray, Surf. Coat. Technol., 2010, 205, p 2167-2173

    Article  Google Scholar 

  10. C. Balagna, S. Perero, S. Ferraris, M. Miola, G. Fucale, C. Manfredotti, A. Battiato, D. Santella, E. Vernè, E. Vittone, and M. Ferraris, Antibacterial Coating on Polymer for Space Application, Mater. Chem. Phys., 2012, 135, p 714-722

    Article  Google Scholar 

  11. D.A. Gulino, Oxygen Barrier Coatings for Enhanced Stability of Polyimide Composites at Elevated Temperatures, NASA Cooperative Agreement NCC3-194 report, 1994, NASA-CR-195904.

  12. Y. Xiang, W. Li, S. Wang, B. Zhao, and Z. Chen, Microstructures and Mechanical Properties of CVD-SiC Coated PIP-C/SiC Composites Under High Temperature, Surf. Coat. Technol., 2012, 209, p 197-202

    Article  Google Scholar 

  13. B. Li, C.R. Zhang, F. Cao, S.Q. Wang, H.F. Hu, and Y.B. Cao, Effects of SiC Coating on Ablation Resistance of Carbon Fibre Reinforced BN-Si3N4 Matrix Composite, Mater. Sci. Technol., 2007, 23, p 1132-1134

    Article  Google Scholar 

  14. H. Li, K. Liang, L. Mei, S. Gu, and S. Wang, Oxidation Protection of Mild Steel by Zirconia Sol-Gel Process, Mater. Lett., 2001, 51, p 320-324

    Article  Google Scholar 

  15. S.K. Tiwari. J. Adhikary, T.B. Singh, and R. Singh, Preparation and Characterization of Sol-Gel Derived Yttria Doped Zirconia Coatings on AISI 316L, Thin Solid Films, 2009, 517, p 4502-4508

  16. M. Ivosevic, R. Knight, S.R. Kalidindi, G.R. Palmese, and J.K. Sutter, Solid Particle Erosion Resistance of Thermally Sprayed Functionally Graded Coatings for Polymer Matrix Composites, Surf. Coat. Technol., 2006, 200, p 5145-5151

    Article  Google Scholar 

  17. A. Liu, M. Guo, M. Zhao, H. Ma, and S. Hu, Arc Sprayed Erosion-Resistant Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrates, Surf. Coat. Technol., 2006, 200, p 3073-3077

    Article  Google Scholar 

  18. D.R. Harding, J.K. Sutter, M.A. Schuerman, and E.A. Crane, Oxidation protective barrier coatings for high temperature polymer matrix composites, J. Mater. Res., 1994, 9, p 1583-1595

    Article  Google Scholar 

  19. F. Robitaille, M. Yandouzi, S. Hid, and B. Jodoin, Metallic Coating of Aerospace Carbon/Epoxy Composites by the Pulsed Gas Dynamic Spraying Process, Surf. Coat. Technol., 2009, 203, p 2954-2960

    Article  Google Scholar 

  20. W.Z. Huang, C.J. Wang, J.L. Yang, B.L. Zou, X.S. Meng, Y. Wang, X.Q. Cao, and Z. Wang, Effect of Zr/Ce Molar Ratio on the Structure of Powders and Zr1−x Ce x O2 Coatings on Quartz Fibre Reinforced Polyimide Matrix Composites Via Sol-Gel Process, J. Sol-Gel. Sci. Technol., 2012, 61, p 213-223

    Article  Google Scholar 

  21. W.Z. Huang, B.L. Zou, Y. Zhao, X.S. Meng, C.J. Wang, X.Q. Cao, and Z. Wang, Fabrication of Novel Thermal Barrier Coating on Polymer Composites Via the Combined Sol-Gel/Sealing Treatment Process, Appl. Surf. Sci., 2012, 258, p 9058-9066

    Article  Google Scholar 

  22. W.Z. Huang, Z. Wang, J.Y. Xu, X.Z. Fan, Y. Wang, B.L. Zou, and X.Q. Cao, Novel Thermal Protection Coating Based on Zr0.75Ce0.25O2/Phosphate Duplex Systems for Polyimide Matrix Composites Fabricated Via Combined Sol-Gel/Sealing Treatment Process, Corros. Sci., 2013, 74, p 22-34

    Article  Google Scholar 

  23. W.Z. Huang, Y. Zhao, X.Z. Fan, X.S. Meng, Y. Wang, X.L. Cai, X.Q. Cao, and Z. Wang, Effect of Bond Coats on Thermal Shock Resistance of Thermal Barrier Coatings Deposited Onto Polymer Matrix Composites Via Air Plasma Spray Process, J. Therm. Spray Technol., 2013, 22, p 918-925

    Article  Google Scholar 

  24. M. Yunus and J. Fazlur, Rahman, An Investigation Towards Characterization of Thermally Sprayed Industrial Coatings, Int. J. Adv. Eng. Sci. Technol., 2011, 10, p 275-284

    Google Scholar 

  25. J. Kawakita, S. Kuroda, T. Fukushima, and T. Kodama, Improvement of Corrosion Resistance of High-Velocity Oxyfuel-Sprayed Stainless Steel Coatings by Addition of Molybdenum, J. Therm. Spray Technol., 2005, 14, p 224-230

    Article  Google Scholar 

  26. R. Nieminen, P. Vuoristo, K. Niemi, T. Mäntylä, and G. Barbezat, Rolling Contact Fatigue Failure Mechanisms in Plasma and HVOF Sprayed WC-Co Coatings, Wear, 1997, 212, p 66-77

    Article  Google Scholar 

  27. W.M. Zhao, Y. Wang, L.X. Dong, K.Y. Wu, and J. Xue, Corrosion Mechanism of NiCrBSi Coatings Deposited by HVOF, Surf. Coat. Technol., 2005, 190, p 293-298

    Article  Google Scholar 

  28. M. Mohanty, R.W. Smith, M. De Bonte, J.P. Celis, and E. Lugscheider, Sliding Wear Behavior of Thermally Sprayed 75/25 Cr3C2/NiCr Wear Resistant Coatings, Wear, 1996, 198, p 251-266

    Article  Google Scholar 

  29. M. Jones, A.J. Horlock, P.H. Shipway, D.G. Mccartney, and J.V. Wood, A Comparison of the Abrasive Wear Behaviour of HVOF Sprayed Titanium Carbide- and Titanium Boride-Based Cermet Coatings, Wear, 2001, 251, p 1009-1016

    Article  Google Scholar 

  30. M. Özcan, H.N. Alkumru, and D. Gemalmaz, The Effect of Surface Treatment on the Shear Bond Strength of Luting Cement to a Glass-Infiltrated Alumina Ceramic, Int. J. Prosthodont, 2001, 14, p 335-339

    Google Scholar 

  31. C.W. Jennings, Surface Roughness and Bond Strength of Adhesives, J. Adhesion, 1972, 4, p 25-38

    Article  Google Scholar 

  32. D. Chang, Y. Choh, W. Hsieh, P. Lin, and T. Tseng, The Role of Drying-Control Chemical Additives on the Preparation of Sol-Gel Derived PLZT Thin Films, J. Mater. Sci., 1993, 28, p 6691-6698

    Article  Google Scholar 

  33. X.J. Zhang, Q. Li, S.Y. Zhao, C.X. Gao, and Z.G. Zhang, Sol-gel Al2O3/ZrO2 Duplex Films for Protection of a γ-TiAl Based Alloy Against High Temperature Oxidation, J. Sol-Gel. Sci. Technol., 2008, 47, p 107-114

    Article  Google Scholar 

  34. S. Shiue, P. Lien, and J. He, Effect of Coating Thickness on Thermal Stresses in Tungsten-Coated Optical Fibers, J. Appl. Phys., 2000, 87, p 3759-3762

    Article  Google Scholar 

  35. R.T.R. McGrann, D.J. Greving, J.R. Shadley, E.F. Rybicki, T.L. Kruecke, and B.E. Bodger, The Effect of Coating Residual Stress on the Fatigue Life of Thermal Spray-Coated Steel and Aluminum, Surf. Coat. Technol., 1998, 108-109, p 59-64

    Article  Google Scholar 

  36. D.J. Greving, J.R. Shadley, and E.F. Rybicki, Effects of Coating Thickness and Residual Stresses on the Bond Strength of ASTM C633-79 Thermal Spray Coating Test Specimens, J. Therm. Spray Technol., 1994, 3, p 371-378

    Article  Google Scholar 

  37. L. Pejryd, J. Wigren, D.J. Greving, J.R. Shadely, and E.F. Rybicki, Residual Stresses as a Factor in the Selection of Tungsten Carbide Coatings for a Jet Engine Application, J. Therm. Spray Technol., 1995, 4, p 268-274

    Article  Google Scholar 

  38. M. Wenzelburger, Modeling of Thermally Sprayed Coatings on Light Metal Substrates: Layer Growth and Residual Stress Formation, Surf. Coat. Technol., 2004, 180-181, p 429-435

    Article  Google Scholar 

  39. T.C. Totemeier, R.N. Wright, and W.D. Swank, Residual Stresses in High-Velocity Oxy-Fuel Metallic Coatings, Metall. Mater. Trans. A, 2004, 35, p 1807-1814

    Article  Google Scholar 

  40. J. Pina, A. Dias, and J.L. Lebrum, Study by X-ray Diffraction and Mechanical Analysis of the Residual Stress Generation During Thermal Spraying, Mater. Sci. Eng., A, 2003, 347, p 21-31

    Article  Google Scholar 

  41. T.C. Totemeier, R.N. Wright, and W.D. Swank, Microstructure and Stresses in HVOF Sprayed Iron Aluminide Coatings, J. Therm. Spray Technol., 2002, 11, p 400-408

    Article  Google Scholar 

  42. S. Kuroda, Y. Tashiro, H. Yumoto, S. Taira, and H. Fukanuma, In Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, p 569-574

  43. V. Luzin, K. Spencer, and M.X. Zhang, Residual Stress and Thermo-Mechanical Properties of Cold Spray Metal Coatings, Acta Mater., 2011, 59, p 1259-1270

    Article  Google Scholar 

  44. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 53, p 117-127

    Article  Google Scholar 

  45. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200, p 49-66

    Article  Google Scholar 

  46. J. Stokes and L. Looney, Residual Stress in HVOF Thermally Sprayed Thick Deposits, Surf. Coat. Technol., 2004, 177-178, p 18-23

    Article  Google Scholar 

  47. H. Sieglerschmidt, Bestimmung der Poissonschen Zahl μ Gewalzter Zinkbleche, Z. Metallk., 1932, 24, p 55-56

    Google Scholar 

  48. ASM, Metal Handbook, Desk edition. ASM, Metals Park, OH, 1985

  49. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, New York, 2008

  50. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 4, p 401-418

    Article  Google Scholar 

  51. S.K. Koh and R.I. Stephens, Mean Stress Effects on Low Cycle Fatigue for a High Strength Steel, Fatigue Fract. Eng. Mater. Struct., 1991, 14, p 413-428

    Article  Google Scholar 

  52. S. Ahmaniemi, P. Vuoristo, T. Mäntylä, F. Cernuschi, and L. Lorenzoni, Modified Thick Thermal Barrier Coatings: Thermophysical Characterization, J. Eur. Ceram. Soc., 2004, 24, p 2669-2679

    Article  Google Scholar 

  53. R.W. Jackson and M.R. Begley, Critical Cooling Rates to Avoid Transient-Driven Cracking in Thermal Barrier Coating (TBC) Systems, Int. J. Solid. Str., 2014, 51, p 1364-1374

    Article  Google Scholar 

  54. S. Sundaram, D.M. Lipkin, and C.A. Johnson, The Influence of Transient Thermal Gradients and Substrate Constraint on Delamination of Thermal Barrier Coatings, J. Appl. Mech., 2013, 80, p 011002-011015

    Article  Google Scholar 

  55. T.J. Lu and N.A. Fleck, The Thermal Shock Resistance of Solids, Acta Mater., 1998, 46, p 4755-4768

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the projects of NSFC-21171160, NSFC-21001017, Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and Aid Program for Innovative Group of National University of Defense Technology. The authors gratefully appreciated Prof. Xueqiang Cao and Prof. Zhen Wang (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) for the help with the experiments and the discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhi Huang or Xueqiang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Huang, W., Cheng, H. et al. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process. J Therm Spray Tech 23, 1312–1322 (2014). https://doi.org/10.1007/s11666-014-0144-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0144-8

Keywords

Navigation