Skip to main content
Log in

Thermal Spray Using a High-Frequency Pulse Detonation Combustor Operated in the Liquid-Purge Mode

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Experiments on thermal spray by pulsed detonations at 150 Hz were conducted. Two types of pulse detonation combustors were used, one operated in the inert gas purge (GAP) mode and the other in the liquid-purge (LIP) mode. In both modes, all gases were supplied in the valveless mode. The GAP mode is free of moving components, although the explosive mixture is unavoidably diluted with the inert gas used for the purge of the hot burned gas. In the LIP mode, pure fuel-oxygen combustion can be realized, although a liquid-droplet injector must be actuated cyclically. The objective of this work was to demonstrate a higher spraying temperature in the LIP mode. First, the temperature of CoNiCrAlY particles heated by pulsed detonations was measured. As a result, the spraying temperature in the LIP mode was higher than that in the GAP mode by about 1000 K. Second, the temperature of yttria-stabilized zirconia (YSZ) particles, whose melting point was almost 2800 °C, heated by pulsed detonations in the LIP mode was measured. As a result, the YSZ particles were heated up to about 2500 °C. Finally, a thermal spray experiment using YSZ particles was conducted, and a coating with low porosity was successfully deposited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a CJ :

Equilibrium sound speed of the burned gas in the Chapman-Jouguet state

a g :

Sound speed of the gas

C D :

Drag coefficient for a particle

c pg :

Specific heat of the gas at constant pressure

c s :

Specific heat of a particle

D CJ :

Chapman-Jouguet detonation speed

d DT :

Inner diameter of the detonation tube

d s :

Diameter of a particle

f :

Fanning friction factor

\(f_{{n^{\prime}}} \left( {\delta_{\text{A1}} } \right)\) :

Function of δ A1 whose form is determined by n

H g :

Stagnation enthalpy of the burned gas

H g,a :

Enthalpy of the burned gas whose temperature is equal to that of the ambient atmosphere

k B :

Boltzmann constant

L DT :

Length of the detonation tube

L s :

Molar latent heat of fusion of the CoNiCrAlY alloy

L s,i :

Molar latent heat of fusion of pure metal i

Ma :

Mach number of a particle

M CJ :

Propagation Mach number of the Chapman-Jouguet detonation

M g :

Mach number of the gas flow

m i :

Molecular mass of species i

m s :

Mass of a particle

n′:

Parameter determined by γ 2 as n′ = (3 − γ 2)/[2(γ 2 − 1)]

Nu :

Nusselt number for a particle

p :

Pressure of the gas

p a :

Pressure of the ambient atmosphere

p CJ :

Pressure of the burned gas in the Chapman-Jouguet state

p plateau :

Gas pressure on the closed end of the detonation tube when the detonation is propagating through the detonation tube

Pr :

Prandtl number

\(\dot{Q}\) :

Heat flow to a particle

Q i :

Time-averaged flow rate of gas i

R a :

Arithmetic mean roughness of a surface

Re :

Reynolds number of a particle

Re DT :

Reynolds number of flow inside the detonation tube

R u :

Universal gas constant

t :

Time whose origin (t = 0) is the ignition timing

t 1 :

Time at which the detonation is propagating at x = −0.15 m

t 2 :

Time at which the detonation arrives at the PDC exit (x = 0)

t cyc :

Period of cyclic PDC operation

t exhaust :

Time at which the gas pressure on the closed end of the detonation tube decreases to the initial pressure

T g :

Temperature of the gas

T g,a :

Temperature of the ambient atmosphere

t plateau :

Time at which the gas pressure on the closed end of the detonation tube begins to decrease from p plateau

T s :

Temperature of a particle

u g :

Flow speed of the gas

u g,x<0 :

Flow speed of fresh explosive gas inside the PDC

u s :

Speed of a particle

υ CJ :

Specific volume of the burned gas in the Chapman-Jouguet state

W g :

Average molar mass of the burned gas in the Chapman-Jouguet state

x :

Coordinate along the central axis of the detonation tube, whose direction is from the closed end toward the exit and whose origin (x = 0) is at the exit

X i :

Mole fraction of species i

x s :

Position of a particle

Y :

Mass fraction

Y i :

Mass fraction of metallic component i in the CoNiCrAlY alloy

α :

Heat transfer coefficient for a particle

γ 1 :

Specific-heat ratio of fresh explosive gas

γ 2 :

Effective specific-heat ratio of the burned gas in the Chapman-Jouguet state

δ A1 :

Dimensionless quantity determined by M CJγ 1, and γ 2

Δt :

Time step in model calculation

ɛ DT :

Surface roughness of the inner wall of the detonation tube

ɛ i :

Lennard-Jones potential well depth of species i

Φ ij :

Dimensionless quantity used for the evaluation of the viscosity of the gas mixture

λ g :

Thermal conductivity of the gas

μ g :

Viscosity of the gas

μ gs :

Viscosity of the gas evaluated at the particle temperature

μ i :

Viscosity of pure species i

ρ g :

Mass density of the gas

ρ g,a :

Mass density of the burned gas whose temperature and pressure are equal to those of ambient atmosphere

ρ s :

Mass density of the CoNiCrAlY alloy

ρ s,i :

Mass density of pure metal i

σ i :

Lennard-Jones collision diameter of species i

τ jet :

Duration of the exhaust jet from the detonation tube

Ω μi :

Dimensionless quantity used for the evaluation of the viscosity of pure species i

0:

Gun exit

CJ:

Chapman-Jouguet

GAP:

Inert gas purge

LIP:

Liquid purge

PDC:

Pulse detonation combustor

PDT:

Pulse detonation technology

slm:

Standard liter per minute

SOFC:

Solid oxide fuel cell

TBC:

Thermal barrier coating

YSZ:

Yttria-stabilized zirconia

References

  1. W. Fickett and W.C. Davis, Detonation, University of California Press, Berkeley, 1979

    Google Scholar 

  2. J.H.S. Lee, The Detonation Phenomenon, Cambridge University Press, New York, 2008

    Book  Google Scholar 

  3. J.A. Nicholls, H.R. Wilkinson, and R.B. Morrison, Intermittent Detonation as a Thrust-Producing Mechanism, Jet Propul., 1957, 27(5), p 534-541

    Article  Google Scholar 

  4. F. Schauer, J. Stutrud, and R. Bradley, Detonation Initiation Studies and Performance Results for Pulsed Detonation Engine, AIAA Paper 2001-1129, 2001.

  5. W.H. Heiser and D.T. Pratt, Thermodynamic Cycle Analysis of Pulse Detonation Engines, J. Propul. Power, 2002, 18(1), p 68-76

    Article  Google Scholar 

  6. G.D. Roy, S.M. Frolov, A.A. Borisov, and D.W. Netzer, Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective, Progr. Energy Combust. Sci., 2004, 30(6), p 545-672

    Article  Google Scholar 

  7. T. Endo, J. Kasahara, A. Matsuo, K. Inaba, S. Sato, and T. Fujiwara, Pressure History at the Thrust Wall of a Simplified Pulse Detonation Engine, AIAA J., 2004, 42(9), p 1921-1930

    Article  Google Scholar 

  8. T. Endo, T. Yatsufusa, S. Taki, A. Matsuo, K. Inaba, and J. Kasahara, Homogeneous-Dilution Model of Partially Fueled Simplified Pulse Detonation Engines, J. Propul. Power, 2007, 23(5), p 1033-1041

    Article  Google Scholar 

  9. T. Endo, T. Yatsufusa, S. Taki, and J. Kasahara, Thermodynamic Analysis of the Performance of a Pulse Detonation Turbine Engine, Sci. Tech. Energ. Mater., 2004, 65(4), p 103-110 (in Japanese)

    Google Scholar 

  10. T. Takahashi, A. Mitsunobu, Y. Ogawa, S. Kato, H. Yokoyama, A. Susa, and T. Endo, Experiments on Energy Balance and Thermal Efficiency of Pulse Detonation Turbine Engine, Sci. Tech. Energ. Mater., 2012, 73(6), p 181-187

    Google Scholar 

  11. R.C. Tucker, Jr., Thermal spray coatings, ASM Handbook, Vol 5, Surface Engineering , C.M. Cotell, J.A. Sprague, and F.A. Smidt, Jr., Ed., ASM International, Materials Park, 1994, p 497-509

    Google Scholar 

  12. O. Knotek, Thermal Spraying and Detonation Gun Processes, Handbook of Hard Coatings, R.F. Bunshah, Ed., Noyes Publications, Park Ridge, 2001, p 77-107

    Google Scholar 

  13. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Thermal Spray Technol., 2001, 10(1), p 44-66

    Article  Google Scholar 

  14. A.S.M. Ang, N. Sanpo, M.L. Sesso, S.Y. Kim, and C.C. Berndt, Thermal Spray Maps: Material Genomics of Processing Technologies, J. Thermal Spray Technol., 2013, 22(7), p 1170-1183

    Article  Google Scholar 

  15. Y.A. Kharlamov, Detonation Spraying of Protective Coatings, Mater. Sci. Eng., 1987, 93, p 1-37

    Article  Google Scholar 

  16. E.A. Astakhov, Controlling the Properties of Detonation-Sprayed Coatings: Major Aspects, Powder Metall. Met. Ceram., 2008, 47(1–2), p 70-79

    Article  Google Scholar 

  17. Yu.A. Nikolaev, A.A. Vasil’ev, and B.Yu. Ul’yanitskii, Gas Detonation and Its Application in Engineering and Technologies (Review), Combust. Expl. Shock Waves, 2003, 39(4), p 382-410

    Article  Google Scholar 

  18. A. Fujii, T. Akitomo, T. Okamoto, A. Susa, T. Endo, and S. Taki, High-Frequency Operation of Pulse Detonation Combustor in Valveless Mode, Proceeding of the 6th Asian-Pacific Conf. on Aerospace Technol. and Sci. (CD-ROM), Nov. 15-19, 2009 (Huangshan, China).

  19. T. Endo, Thermal Spray by Pulsed Detonations, 2013 International Workshop on Detonation for Propulsion (USB memory), July 26-28, 2013 (Tainan, Taiwan)

  20. K. Matsuoka, T. Mukai, and T. Endo, Development of a Liquid-Purge Method for High-Frequency Operation of Pulse Detonation Combustor, Combust. Sci. Technol., 2015, 187(5), p 747-764

    Article  Google Scholar 

  21. P. Saravanan, V. Selvarajan, D.S. Rao, S.V. Joshi, and G. Sundararajan, Influence of Process Variables on the Quality of Detonation Gun Sprayed Alumina Coatings, Surf. Coat. Technol., 2000, 123(1), p 44-54

    Article  Google Scholar 

  22. H. Du, W. Hua, J. Liu, J. Gong, C. Sun, and L. Wen, Influence of Process Variables on the Qualities of Detonation Gun Sprayed WC-Co Coatings, Mater. Sci. Eng. A, 2005, 408(1–2), p 202-210

    Article  Google Scholar 

  23. C. Henkes and H. Olivier, Flow Characterization of a Detonation Gun Facility and First Coating Experiments, J. Thermal Spray Technol., 2014, 23(5), p 795-808

    Article  Google Scholar 

  24. B.J. Gill, Super D-Gun, Aircraft Eng., 1990, 62(8), p 10-14

    Article  Google Scholar 

  25. K. Niemi, P. Vuoristo, and T. Mäntylä, Properties of Alumina-Based Coatings Deposited by Plasma Spray and Detonation Gun Spray Processes, J. Thermal Spray Technol., 1994, 3(2), p 199-203 (Errata 3(3), p 242)

    Article  Google Scholar 

  26. I. Fagoaga, G. Barykin, J. de Juan, T. Soroa, and C. Vaquero, The High Frequency Pulse Detonation (HFPD) Spray Process, Thermal Spray 1999: United Thermal Spray Conference, Tagungsband Conference Proceedings, E. Lugscheider and R.A. Kammer, Ed., March 17-19, 1999 (Düsseldorf, Germany), DVS Deutscher Verband für Schweißen, 1999, p 282-287.

  27. M. Parco, G. Barykin, I. Fagoaga, and C. Vaquero, Development of Wear Resistant Ceramic Coatings by HFPD, Thermal Spray 2008: Thermal Spray Crossing Borders, E. Lugscheider, Ed., June 2-4, 2008 (Maastricht, The Netherlands), ASM International, 2008, p 130-134.

  28. F.J. Belzunce, V. Higuera, and S. Poveda, High Temperature Oxidation of HFPD Thermal-Sprayed MCrAlY Coatings, Mater. Sci. Eng. A, 2001, 297(1–2), p 162-167

    Article  Google Scholar 

  29. V.H. Hidalgo, F.J.B. Varela, and J.R. López, Cyclic High Temperature Oxidation of HFPD Thermal Sprayed CoNiCrAlY Coatings Under Simulated Gas Turbine and Furnace Environments, Surf. Eng., 2006, 22(4), p 277-282

    Article  Google Scholar 

  30. M.C. Mayoral, J.M. Andrés, M.T. Bona, V. Higuera, and F.J. Belzunce, Yttria Stabilized Zirconia Corrosion Destabilization Followed by Raman Mapping, Surf. Coat. Technol., 2008, 202(21), p 5210-5216

    Article  Google Scholar 

  31. F. Mubarok, S. Armada, I. Fagoaga, and N. Espallargas, Thermally Sprayed SiC Coatings for Offshore Wind Turbine Bearing Applications, J. Thermal Spray Technol., 2013, 22(8), p 1303-1309

    Article  Google Scholar 

  32. V. Higuera, F.J. Belzunce, and J. Riba, Influence of the Thermal-Spray Procedure on the Properties of a CoNiCrAlY Coating, Surf. Coat. Technol., 2006, 200(18–19), p 5550-5556

    Article  Google Scholar 

  33. V. Higuera, F.J. Belzunce, A. Carriles, and S. Poveda, Influence of the Thermal-Spray Procedure on the Properties of a Nickel-Chromium Coating, J. Mater. Sci., 2002, 37(3), p 649-654

    Article  Google Scholar 

  34. F.J. Belzunce, V. Higuera, S. Poveda, and A. Carriles, High Temperature Oxidation of HFPD Thermal-Sprayed MCrAlY Coatings in Simulated Gas Turbine Environments, J. Thermal Spray Technol., 2002, 11(4), p 461-467

    Article  Google Scholar 

  35. K. Tani and H. Nakahira, Status of Thermal Spray Technology in Japan, J. Thermal Spray Technol., 1992, 1(4), p 333-339

    Article  Google Scholar 

  36. D. Soysal, J. Arnold, P. Szabo, R. Henne, and S.A. Ansar, Thermal Plasma Spraying Applied on Solid Oxide Fuel Cells, J. Thermal Spray Technol., 2013, 22(5), p 588-598

    Article  Google Scholar 

  37. Cobalt Nickel Chromium Aluminum Yttrium (CoNiCrAlY) Thermal Spray Powders, Material Product Data Sheet, DSMTS-0092.5-CoNiCrAlY Powders, Oerlikon Metco, 2014.

  38. Y. Hirayama, T. Matsumoto, H. Motomura, and S. Ono, Casting Method for Surface Coating, Published Unexamined Patent Application, P2004-74202A, Japan Patent Office, 2004 (in Japanese).

  39. 8% Yttria Stabilized Zirconia Agglomerated and HOSP Thermal Spray Powders, Material Product Data Sheet, DSMTS-0001.5-HOSP 8% YsZ Powders, Oerlikon Metco, 2014.

  40. W.C. Reynolds, The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN, Version 3, Technical Rept., Dept. of Mechanical Engineering, Stanford Univ., 1986.

  41. A. Haider and O. Levenspiel, Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles, Powder Technol., 1989, 58(1), p 63-70

    Article  Google Scholar 

  42. D.J. Carlson and R.F. Hoglund, Particle Drag and Heat Transfer in Rocket Nozzles, AIAA J., 1964, 2(11), p 1980-1984

    Article  Google Scholar 

  43. S. Whitaker, Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles, AIChE J., 1972, 18(2), p 361-371

    Article  Google Scholar 

  44. C. Henkes and H. Olivier, Particle Acceleration in a High Enthalpy Nozzle Flow with a Modified Detonation Gun, J. Thermal Spray Technol., 2014, 23(4), p 625-640

    Article  Google Scholar 

  45. L.L. Kavanau and R.M. Drake, Jr., Heat Transfer from Spheres to a Rarefied Gas in Subsonic Flow, Technical Rept., HE-150-108, Univ. of California, 1953.

  46. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Sec. 1.4, 2nd ed., Wiley, New York, 2002

    Google Scholar 

  47. C.K. Law, Combustion Physics, Ch. 4, Cambridge University Press, New York, 2006

    Book  Google Scholar 

  48. R.S. Brokaw, Predicting Transport Properties of Dilute Gases, Ind. Eng. Chem. Process Des. Dev., 1969, 8(2), p 240-253

    Article  Google Scholar 

  49. B.E. Poling, J.M. Prausnitz, and J.P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, 2001, p 10.3

    Google Scholar 

  50. T. Fujii and T. Takahashi, Estimation of Thermophysical Properties of Coating Layers for Gas Turbine Hot Parts—Part 1: Measurement of Thermophysical Properties of Coating Layers and Superalloy, and Comparison between Virgin and Aged Material—, CRIEPI REPORT, W97017, Central Research Institute of Electric Power Industry, 1998 (in Japanese).

  51. E. Romeo, C. Royo, and A. Monzón, Improved Explicit Equations for Estimation of the Friction Factor in Rough and Smooth Pipes, Chem. Eng. J., 2002, 86(3), p 369-374

    Article  Google Scholar 

  52. P.O. Witze, Centerline Velocity Decay of Compressible Free Jets, AIAA J., 1974, 12(4), p 417-418

    Article  Google Scholar 

  53. G. Kleinstein, Mixing in Turbulent Axially Symmetric Free Jets, J. Spacecr., 1964, 1(4), p 403-408

    Article  Google Scholar 

  54. I. Fagoaga, M. Parco, G. Barykin, C. Vaquero, and J. de Juan, Development of Zirconia Coatings by HFPD, Thermal Spray 2006: International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and J. Voyer, Ed., May 15-18, 2006 (Seattle, USA), ASM International, 2006, p 551-556.

  55. A.R. Nicoll and A. Salito, The Potential of Plasma Spraying for the Deposition of Coatings on SOFC Components, Solid State Ionics, 1992, 52(1–3), p 269-275

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by KAKENHI 26289323 and JKA 25-148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Endo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, T., Obayashi, R., Tajiri, T. et al. Thermal Spray Using a High-Frequency Pulse Detonation Combustor Operated in the Liquid-Purge Mode. J Therm Spray Tech 25, 494–508 (2016). https://doi.org/10.1007/s11666-015-0354-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0354-8

Keywords

Navigation