Skip to main content
Log in

Particle In-Flight Velocity and Dispersion Measurements at Increasing Particle Feed Rates in Cold Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spray (CS) is attracting interest of research and industry due to its rapid, solid-state particle deposition process and respective advantages over conventional deposition technologies. The acceleration of the particles is critical to the efficiency of CS, and previous investigations rarely consider the particle feed rate. However, because higher particle loadings are typically used in the process, the effect of this cannot be assumed negligible. This study therefore investigates the particle velocities in the supersonic jet of an advanced CS system at low- and high pressure levels and varying particle feed rates using particle image velocimetry. The particle dispersion and velocity evolution along the jet axis were investigated for several feedstock materials. It was found that the average particle velocity noticeably decreases with increasing particulate loading in all cases. The velocity distribution and particle dispersion were also observed to be influenced by the feed rate. Effects are driven by both mass loading and volume fraction, depending on the feedstock’s particle velocity parameter. Increased particle feed rates hence affect the magnitude and distribution of impact velocity and consequently the efficiency of CS. In particular, numerical models neglecting this interconnection are required to be further improved, based on these experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Alkhimov, V.F. Kosarev, and A. Papyrin, Method of Cold Gas Dynamic Spraying, Dokl. Acad. Nauk SSSR, 1990, 315(5), p 1062-1065

    Google Scholar 

  2. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    Google Scholar 

  3. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  4. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold Gas Dynamic Spray Process, Mater. Sci. Eng., 2004, 368(1-2), p 222-230

    Article  Google Scholar 

  5. T. Han, Z. Zhao, B.A. Gillispie, and J.R. Smith, Effects of Spray Conditions on Coating Formation by the Kinetic Spray Process, J. Therm. Spray Technol., 2005, 14(3), p 373-383

    Article  Google Scholar 

  6. E.H. Kwon, S.H. Cho, J.W. Han, C.H. Lee, and H.J. Kim, Particle Behavior in Supersonic Flow During the Cold Spray Process, Met. Mater. Int., 2005, 11(5), p 377-381

    Article  Google Scholar 

  7. T.C. Jen, L. Li, W. Cui, Q. Chen, and X. Zhang, Numerical Investigations on Cold Gas Dynamic Spray Process with Nano- and Microsize Particles, Int. J. Heat Mass Transf., 2005, 48(21-22), p 4384-4396

    Article  Google Scholar 

  8. H. Katanoda, T. Matsuoka, and K. Matsuo, Experimental Study on Shock Wave Structures in Constant-Area Passage of Cold Spray Nozzle, J. Therm. Sci., 2007, 16(1), p 40-45

    Article  Google Scholar 

  9. S. Yin, Q. Liu, H. Liao, and X.-F. Wang, Effect of Injection Pressure on Particle Acceleration, Dispersion and Deposition in Cold Spray, Comput. Mater. Sci., 2014, 90, p 7-15

    Article  Google Scholar 

  10. S. Yin, X. Suo, H. Liao, Z. Guo, and X. Wang, Significant Influence of Carrier Gas Temperature During the Cold Spray Process, Surf. Eng., 2014, 30(6), p 443-451

    Article  Google Scholar 

  11. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 223-232

    Article  Google Scholar 

  12. A. Sova, A. Okunkova, S. Grigoriev, and I. Smurov, Velocity of the Particles Accelerated by a Cold Spray Micronozzle: Experimental Measurements and Numerical Simulation, J. Therm. Spray Technol., 2012, 22(1), p 75-80

    Article  Google Scholar 

  13. S. Li, B. Muddle, M. Jahedi, and J. Soria, A Numerical Investigation of the Cold Spray Process Using Underexpanded and Overexpanded Jets, J. Therm. Spray Technol., 2011, 21(1), p 108-120

    Article  Google Scholar 

  14. X.-F. Wang, S. Yin, and B.P. Xu, Effect of Cold Spray Particle Conditions and Optimal Standoff Distance on Impact Velocity, J. Dalian Univ. Technol., 2011, 51(4), p 498-504

    Google Scholar 

  15. W.-Y. Li and C.-J. Li, Optimization of Spray Conditions in Cold Spraying Based on Numerical Analysis of Particle Velocity, Trans. Nonferrous Met. Soc. China, 2004, 14(2), p 43-48

    Google Scholar 

  16. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  Google Scholar 

  17. H. Fukanuma, N. Ohno, B. Sun, and R. Huang, In-Flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coat. Technol., 2006, 201(5), p 1935-1941

    Article  Google Scholar 

  18. B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modeling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 200(14-15), p 4424-4432

    Article  Google Scholar 

  19. F. Raletz, M. Vardelle, and G. Ezo'o, Critical Particle Velocity Under Cold Spray Conditions, Surf. Coat. Technol., 2006, 201(5), p 1942-1947

    Article  Google Scholar 

  20. X.-J. Ning, Q.-S. Wang, Z. Ma, and H.-J. Kim, Numerical Study of In-flight Particle Parameters in Low-Pressure Cold Spray Process, J. Therm. Spray Technol., 2010, 19(6), p 1211-1217

    Article  Google Scholar 

  21. S.P. Pardhasaradhi, V. Venkatachalapathy, S.V. Joshi, and S. Govindan, Optical Diagnostics Study of Gas Particle Transport Phenomena in Cold Gas Dynamic Spraying and Comparison with Model Predictions, J. Therm. Spray Technol., 2008, 17(4), p 551-563

    Article  Google Scholar 

  22. B. Samareh, O. Stier, V. Lüthen, and A. Dolatabadi, Assessment of CFD Modeling via Flow Visualization in Cold Spray Process, J. Therm. Spray Technol., 2009, 18(5-6), p 934-943

    Article  Google Scholar 

  23. R. Lupoi, Current Design and Performance of Cold Spray Nozzles: Experimental and Numerical Observations on Deposition Efficiency and Particle Velocity, Surf. Eng., 2014, 30(5), p 316-322

    Article  Google Scholar 

  24. M. Meyer and R. Lupoi, An Analysis of the Particulate Flow in Cold Spray Nozzles, Mech. Sci., 2015, 6(2), p 127-136

    Article  Google Scholar 

  25. J.A. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454

    Article  Google Scholar 

  26. S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2008, 18(1), p 110-117

    Article  Google Scholar 

  27. O. Stier, Fundamental Cost Analysis of Cold Spray, J. Therm. Spray Technol., 2014, 23(1-2), p 131-139

    Article  Google Scholar 

  28. H. Katanoda, M. Fukuhara, and N. Iino, Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray, J. Therm. Spray Technol., 2007, 16(5-6), p 627-633

    Article  Google Scholar 

  29. M. Stanislas, K. Okamoto, C.J. Kähler, and J. Westerweel, Main Results of the Second International PIV Challenge, Exp. Fluids, 2005, 39(2), p 170-191

    Article  Google Scholar 

  30. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  Google Scholar 

  31. S. Yin, M. Meyer, W.-Y. Li, H. Liao, and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review, J. Therm. Spray Technol., 2016

Download references

Acknowledgments

The authors wish to acknowledge FP7 Marie Curie Actions (Grant 333663) for the financial support and to the CRANN Advanced Microscopy Laboratory (AML) for the cooperation, as well as to Dr. Tim Persoons (Trinity College Dublin) and Dr. Kevin McDonnell (University College Dublin) for the technical advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, M., Yin, S. & Lupoi, R. Particle In-Flight Velocity and Dispersion Measurements at Increasing Particle Feed Rates in Cold Spray. J Therm Spray Tech 26, 60–70 (2017). https://doi.org/10.1007/s11666-016-0496-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0496-3

Keywords

Navigation