Skip to main content
Log in

Diagnostics of Cold-Sprayed Particle Velocities Approaching Critical Deposition Conditions

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In cold spraying, the impact particle velocity plays a key role for successful deposition. It is well known that only those particles can achieve successful bonding which have an impact velocity exceeding a particular threshold. This critical velocity depends on the thermomechanical properties of the impacting particles at impacting temperature. The latter depends on the gas temperature in the torch but also on stand-off distance and gas pressure. In the past, some semiempirical approaches have been proposed to estimate particle impact and critical velocities. Besides that, there are a limited number of available studies on particle velocity measurements in cold spraying. In the present work, particle velocity measurements were performed using a cold spray meter, where a laser beam is used to illuminate the particles ensuring sufficiently detectable radiant signal intensities. Measurements were carried out for INCONEL® alloy 718-type powders with different particle sizes. These experimental investigations comprised mainly subcritical spray parameters for this material to have a closer look at the conditions of initial deposition. The critical velocities were identified by evaluating the deposition efficiencies and correlating them to the measured particle velocity distributions. In addition, the experimental results were compared with some values estimated by model calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. DIN EN 657: Thermal Spraying—Terminology, Classification, 2005

  2. V. Champagne and D. Helfritch, Critical Assessment 11: Structural Repairs by Cold Spray, Mater. Sci. Technol., 2014, 31(6), p 627-634

    Article  Google Scholar 

  3. C. Slama and M. Abdellaoui, Structural Characterization of the Aged Inconel 718, J. Alloys Compd., 2000, 306, p 277-284

    Article  Google Scholar 

  4. G.A. Rao, K.S. Prasad, M. Kumar, M. Srinivas, and D.S. Sarma, Characterisation of Hot Isostatically Pressed Nickel Base Superalloy Inconel* 718, Mater. Sci. Technol., 2003, 19(3), p 313-321

    Article  Google Scholar 

  5. T. Marrocco, Development of Improved Cold Spray and HVOF Deposited Coatings, PhD thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/11453/1/493325.pdf

  6. J. Karthikeyan and A. Kay, Cold Spray Technology: An Industrial Perspective. in Thermal Spray 2003: Advancing the Science and Applying the Technology. ed. by B.R. Marple, C. Moreau, May 5-8, 2003 (Orlando, FL), ASM International, 2003, Vol 1, p. 845 Vol 2, pp. 864, 117-121 (2003)

  7. J. Kim, S. Lee, and C. Lee, Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process, J. Korean Inst. Surf. Eng., 2015, 48(6), p 275-282

    Article  Google Scholar 

  8. W. Wong, E. Irissou, P. Vo, M. Sone, F. Bernier, J.G. Legoux, H. Fukanuma, and S. Yue, Cold Spray Forming of Inconel 718, J. Therm. Spray Technol., 2012, 22(2-3), p 413-421

    Article  Google Scholar 

  9. D. Levasseur, S. Yue, and M. Brochu, Pressureless Sintering of Cold Sprayed Inconel 718 Deposit, Mater. Sci. Eng. A, 2012, 556, p 343-350

    Article  Google Scholar 

  10. M.A. Morris, E. Sauvain, and D.G. Morris, Post-Compaction Heat-Treatment Response of Dynamically-Compacted Inconel 718 Powder, J. Mater. Sci., 1987, 22, p 1509-1516

    Article  Google Scholar 

  11. S. Yin, M. Meyer, W. Li, H. Liao, and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review, J. Therm. Spray Technol., 2016, 25(5), p 874-896

    Article  Google Scholar 

  12. B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modeling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 200(14-15), p 4424-4432

    Article  Google Scholar 

  13. V.K. Champagne, D.J. Helfritch, S.P.G. Dinavahi, and P.F. Leyman, Theoretical and Experimental Particle Velocity in Cold Spray, J. Therm. Spray Technol., 2011, 20(3), p 425-431

    Article  Google Scholar 

  14. G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424

    Article  Google Scholar 

  15. K. Landes, Diagnostics in Plasma Spraying Techniques, Surf. Coat. Technol., 2006, 201(5), p 1948-1954

    Article  Google Scholar 

  16. J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 619-626

    Article  Google Scholar 

  17. J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454

    Article  Google Scholar 

  18. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176

    Article  Google Scholar 

  19. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  Google Scholar 

  20. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, and E.J. Lavernia, Effect of Particle Size, Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings, Surf. Coat. Technol., 2006, 201(6), p 3422-3429

    Article  Google Scholar 

  21. S.P. Pardhasaradhi, V. Venkatachalapathy, S.V. Joshi, and S. Govindan, Optical Diagnostics Study of Gas Particle Transport Phenomena in Cold Gas Dynamic Spraying and Comparison with Model Predictions, J. Therm. Spray Technol., 2008, 17(4), p 551-563

    Article  Google Scholar 

  22. R. Huang and H. Fukanuma, Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits, J. Therm. Spray Technol., 2011, 21(3-4), p 541-549

    Article  Google Scholar 

  23. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  Google Scholar 

  24. A. Hölzer and M. Sommerfeld, New Simple Correlation Formula for the Drag Coefficient of Non-spherical Particles, Powder Technol., 2008, 184(3), p 361-365

    Article  Google Scholar 

  25. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  Google Scholar 

  26. H. Fukanuma, N. Ohno, B. Sun, and R. Huang, In-flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coat. Technol., 2006, 201(5), p 1935-1941

    Article  Google Scholar 

  27. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauer, G., Singh, R., Rauwald, KH. et al. Diagnostics of Cold-Sprayed Particle Velocities Approaching Critical Deposition Conditions. J Therm Spray Tech 26, 1423–1433 (2017). https://doi.org/10.1007/s11666-017-0596-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0596-8

Keywords

Navigation