Skip to main content
Log in

High-Strain-Rate Material Behavior and Adiabatic Material Instability in Impact of Micron-Scale Al-6061 Particles

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

A Correction to this article was published on 26 March 2018

This article has been updated

Abstract

Impact of spherical particles onto a flat sapphire surface was investigated in 50-950 m/s impact speed range experimentally and theoretically. Material parameters of the bilinear Johnson–Cook model were determined based on comparison of deformed particle shapes from experiment and simulation. Effects of high-strain-rate plastic flow, heat generation due to plasticity, material damage, interfacial friction and heat transfer were modeled. Four distinct regions were identified inside the particle by analyzing temporal variation of material flow. A relatively small volume of material near the impact zone becomes unstable due to plasticity-induced heating, accompanied by severe drop in the flow stress for impact velocity that exceeds ~ 500 m/s. Outside of this region, flow stress is reduced due to temperature effects without the instability. Load carrying capacity of the material degrades and the material expands horizontally leading to jetting. The increase in overall plastic and frictional dissipation with impact velocity was found to be inherently lower than the increase in the kinetic energy at high speeds, leading to the instability. This work introduces a novel method to characterize HSR (109 s−1) material properties and also explains coupling between HSR material behavior and mechanics that lead to extreme deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 26 March 2018

    An acknowledgement was omitted by the authors. The following should have been included with the published article.

Abbreviations

A :

Static yield stress, MPa

A c :

Contact area, m2

B :

Coefficient of strain hardening, MPa

c :

Specific heat, J/kg K

C :

Bilinear strain rate coefficient

D1 :

Height of deformed particle, m

D2 :

Diameter of deformed particle, m

D p :

Diameter of particle, m

e :

Coefficient of restitution

E :

Elastic modulus, error between experiment and simulation aspect ratios

E k :

Kinetic energy of particle, J

E r :

Recovered strain energy, J

k :

Thermal conductivity, W/m K

m :

Index of thermal softening

m p :

Mass of particle, kg

n :

Index of strain-rate hardening

R e :

Experimental aspect ratio

R s :

Simulated aspect ratio

T :

Temperature, K

T * :

Homologous temperature

T m :

Melting temperature, K

T R :

Reference temperature, K

U p :

Energy dissipated due to plastic action, J

v i :

Impact velocity, m/s

v r :

Rebound velocity, m/s

W f :

Work done against friction, J

x :

Optimization variable vector

α :

Thermal expansion ratio, K−1

β :

Inelastic heat fraction

\(\varepsilon_{f}\) :

Failure shear strain

\(\varepsilon_{\text{p}}\) :

Equivalent plastic strain

\(\dot{\varepsilon }_{ 0}\) :

Reference strain rate, s−1

\(\dot{\varepsilon }_{\text{c}}\) :

Critical reference strain rate, s−1

\(\dot{\varepsilon }_{\text{p}}\) :

Equivalent plastic strain rate, s−1

µ :

Kinetic friction coefficient

ν :

Poisson’s ratio

ρ :

Mass density, kg/m3

σ Y :

Yield (flow) stress, MPa

r :

Material properties at room temperature

CS:

Cold spray

FEA:

Finite element analysis

GZ:

Gao-Zhang

HSR:

High strain rate

JC:

Johnson–Cook

KHL:

Khan–Huang–Liang

LIPIT:

Laser-induced projectile impact test

PDMS:

Polydimethylsiloxane

PTW:

Preston–Tonk–Wallace

VA:

Voyiadjis–Abed

ZA:

Zerilli–Armstrong

References

  1. S.V. Klinkov, V.F. Kosarev, and M. Rein, Cold Spray Deposition: Significance of Particle Impact Phenomena, Aerosp. Sci. Technol., 2005, 9(7), p 582-591

    Article  Google Scholar 

  2. M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994

    Book  Google Scholar 

  3. G.T. Gray, Classic Split-Hopkinson Pressure Bar Testing, ASM International, Materials Park, OH, 2000, p 462-476

    Google Scholar 

  4. H. Kolsky, An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Phys. Soc. Lond. B, 1949, 62(11), p 676

    Article  Google Scholar 

  5. J. Harding, E. Wood, and J. Campbell, Tensile Testing of Materials at Impact Rates of Strain, J. Mech. Eng. Sci., 1960, 2(2), p 88-96

    Article  Google Scholar 

  6. F.E. Hauser, Techniques for Measuring Stress-Strain Relations at High Strain Rates, Exp. Mech., 1966, 6(8), p 395-402

    Article  Google Scholar 

  7. U. Lindholm and L. Yeakley, High Strain-Rate Testing: Tension and Compression, Exp. Mech., 1968, 8(1), p 1-9

    Article  Google Scholar 

  8. D. Rittel, S. Lee, and G. Ravichandran, A Shear-Compression Specimen for Large Strain Testing, Exp. Mech., 2002, 42(1), p 58-64

    Article  Google Scholar 

  9. J. Zhao, H. Li, and Y. Zhao, Dynamic Strength Tests of the Bukit Timah Granite, Nanyang Technological University, Singapore, 1998

    Google Scholar 

  10. S. Huang, X. Feng, and K. Xia, A Dynamic Punch Method to Quantify the Dynamic Shear Strength of Brittle Solids, Rev. Sci. Instrum., 2011, 82(5), p 053901

    Article  Google Scholar 

  11. J. Zhao, An Overview of Some Recent Progress in Rock Dynamics Research, Advances in Rock Dynamics and Applications. CRC Press, Boca Raton, 2011, p 5-33

    Google Scholar 

  12. R. Armstrong and F. Zerilli, Dislocation Mechanics Aspects of Plastic Instability and Shear Banding, Mech. Mater., 1994, 17(2-3), p 319-327

    Article  Google Scholar 

  13. C. Gao and L. Zhang, Constitutive Modelling of Plasticity of FCC Metals Under Extremely High Strain Rates, Int. J. Plast., 2012, 32, p 121-133

    Article  Google Scholar 

  14. G.R. Johnson, and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983

  15. A.S. Khan and R. Liang, Behaviors of Three BCC Metal Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Int. J. Plast., 1999, 15(10), p 1089-1109

    Article  Google Scholar 

  16. A.S. Khan and R. Liang, Behaviors of Three BCC Metals During Non-proportional Multi-axial Loadings: Experiments and Modeling, Int. J. Plast., 2000, 16(12), p 1443-1458

    Article  Google Scholar 

  17. D.L. Preston, D.L. Tonks, and D.C. Wallace, Model of Plastic Deformation for Extreme Loading Conditions, J. Appl. Phys., 2003, 93(1), p 211-220

    Article  Google Scholar 

  18. G.Z. Voyiadjis and F.H. Abed, Microstructural Based Models for BCC and FCC Metals with Temperature and Strain Rate Dependency, Mech. Mater., 2005, 37(2), p 355-378

    Article  Google Scholar 

  19. M. Grujicic, C. Zhao, W. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  Google Scholar 

  20. T. Hu, S. Zhalehpour, A. Gouldstone, S. Muftu, and T. Ando, A Method for the Estimation of the Interface Temperature in Ultrasonic Joining, Metall. Mater. Trans. A, 2014, 45(5), p 2545-2552

    Article  Google Scholar 

  21. V.K. Champagne, Jr., D. Helfritch, P. Leyman, S. Grendahl, and B. Klotz, Interface Material Mixing Formed by the Deposition of Copper on Aluminum by Means of the Cold Spray Process, J. Therm. Spray Technol., 2005, 14(3), p 330-334

    Article  Google Scholar 

  22. M. Grujicic, J. Saylor, D. Beasley, W. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3), p 211-227

    Article  Google Scholar 

  23. S. Guetta, M.-H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, J. Therm. Spray Technol., 2009, 18(3), p 331-342

    Article  Google Scholar 

  24. T. Hussain, D. McCartney, P. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    Article  Google Scholar 

  25. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  26. W.-Y. Li, H. Liao, C.-J. Li, G. Li, C. Coddet, and X. Wang, On High Velocity Impact of Micro-sized Metallic Particles in Cold Spraying, Appl. Surf. Sci., 2006, 253(5), p 2852-2862

    Article  Google Scholar 

  27. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794

    Article  Google Scholar 

  28. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  Google Scholar 

  29. W. Li, D. Zhang, C. Huang, S. Yin, M. Yu, F. Wang, and H. Liao, Modelling of Impact Behaviour of Cold Spray Particles: Review, Surf. Eng., 2014, 30(5), p 299-308

    Article  Google Scholar 

  30. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  Google Scholar 

  31. B. Yildirim, H. Fukanuma, T. Ando, A. Gouldstone, and S. Müftü, A Numerical Investigation into Cold Spray Bonding Processes, J. Tribol., 2015, 137(1), p 011102

    Article  Google Scholar 

  32. S. Müftü, S. Zhalehpour, A. Gouldstone, and T. Ando, Assessment of Interface Energy in High Velocity Particle Impacts, 38th Annual Meeting of The Adhesion Society. Savannah, GA, 2015

  33. B. Yildirim, S. Müftü, and A. Gouldstone, On Cohesion of Micron Scale Metal Particles in High Velocity Impact with a Metal Substrate, ASME/STLE 2011 International Joint Tribology Conference, American Society of Mechanical Engineers, 2011

  34. W.-Y. Li, C. Zhang, X. Guo, C.-J. Li, H. Liao, and C. Coddet, Study on Impact Fusion at Particle Interfaces and Its Effect on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 254(2), p 517-526

    Article  Google Scholar 

  35. A. Alkhimov, A. Gudilov, V. Kosarev, and N. Nesterovich, Specific Features of Microparticle Deformation Upon Impact on a Rigid Barrier, J. Appl. Mech. Tech. Phys., 2000, 41(1), p 188-192

    Article  Google Scholar 

  36. G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57(19), p 5654-5666

    Article  Google Scholar 

  37. S. Schoenfeld and T. Wright, A Failure Criterion Based on Material Instability, Int. J. Solids Struct., 2003, 40(12), p 3021-3037

    Article  Google Scholar 

  38. T.W. Wright and J.W. Walter, On Stress Collapse in Adiabatic Shear Bands, J. Mech. Phys. Solids, 1987, 35(6), p 701-720

    Article  Google Scholar 

  39. T. Wright and H. Ockendon, A Scaling Law for the Effect of Inertia on the Formation of Adiabatic Shear Bands, Int. J. Plast., 1996, 12(7), p 927-934

    Article  Google Scholar 

  40. T. Wright, Shear Band Susceptibility: Work Hardening Materials, Int. J. Plast., 1992, 8(5), p 583-602

    Article  Google Scholar 

  41. B. Yildirim, S. Muftu, and A. Gouldstone, Modeling of High Velocity Impact of Spherical Particles, Wear, 2011, 270(9-10), p 703-713

    Article  Google Scholar 

  42. W. Xie, A. Alizadeh-Dehkharghani, Q. Chen, V.K. Champagne, X. Wang, A.T. Nardi, S. Kooi, S. Müftü, and J.-H. Lee, Dynamics and Extreme Plasticity of Metallic Microparticles in Supersonic Collisions, Sci. Rep., 2017, 7, p 5073

    Article  Google Scholar 

  43. J.-H. Lee, P.E. Loya, J. Lou, and E.L. Thomas, Dynamic Mechanical Behavior of Multilayer Graphene Via Supersonic Projectile Penetration, Science, 2014, 346(6213), p 1092-1096

    Article  Google Scholar 

  44. J.-H. Lee, D. Veysset, J.P. Singer, M. Retsch, G. Saini, T. Pezeril, K.A. Nelson, and E.L. Thomas, High Strain Rate Deformation of Layered Nanocomposites, Nature communications, 2012, 3, p 1164

    Article  Google Scholar 

  45. S. Barradas, V. Guipont, R. Molins, M. Jeandin, M. Arrigoni, M. Boustie, C. Bolis, L. Berthe, and M. Ducos, Laser Shock Flier Impact Simulation of Particle-Substrate Interactions in Cold Spray, J. Therm. Spray Technol., 2007, 16(4), p 548-556

    Article  Google Scholar 

  46. M. Arrigoni, M. Boustie, C. Bolis, S. Barradas, L. Berthe, and M. Jeandin, Shock Mechanics and Interfaces, Mechanics of Solid Interfaces, M. Braccini and M. Dupeux, Eds., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012. https://doi.org/10.1002/9781118561669.ch7

  47. M. Jeandin, D.K. Christoulis, F. Borit, M.-H. Berger, S. Guetta, G. Rolland, V. Guipont, F. N’Guyen, D. Jeulin, and E. Irissou, A Socratic Approach to Surface Modification: The Example of Thermal Spray, 24th International Conference on Surface Modification Technologies, SMT 24, 2010

  48. M. Hassani-Gangaraj, D. Veysset, K.A. Nelson, and C.A. Schuh, In-situ Observations of Single Micro-particle Impact Bonding, Scripta Mater., 2018, 145, p 9-13

    Article  Google Scholar 

  49. Dassault Systèmes Simulia Corp., P., RI, USA, ABAQUS/Explicit 6.13 User Manual. 2013

  50. Dehkharghani, A.A., Tuning Johnson–Cook Material Model Parameters for Impact of High Velocity, Micron Scale Aluminum Particles, Department of Mechanical and Industrial Engineering. 2016, MS Thesis, Northeastern University.

  51. Yildirim, B., Mechanistic Modeling of High Velocity Micro-particle Impacts: Application to Material Deposition by Cold Spray Process, in Department of Mechanical and Industrial Engineering. 2013, PhD Thesis, Northeastern University

  52. T. Belytschko, J.S.-J. Ong, W.K. Liu, and J.M. Kennedy, Hourglass Control in Linear and Nonlinear Problems, Comput. Methods Appl. Mech. Eng., 1984, 43(3), p 251-276

    Article  Google Scholar 

  53. JAHM Software Inc., I., MPDB Material Database Software, 1998

  54. A. Manes, D. Lumassi, L. Giudici, and M. Giglio, An Experimental–Numerical Investigation on Aluminium Tubes Subjected to Ballistic Impact with Soft Core 7.62 Ball Projectiles, Thin-Walled Structures, 2013, 73, p 68-80

    Article  Google Scholar 

  55. A. Manes, L. Peroni, M. Scapin, and M. Giglio, Analysis of Strain Rate Behavior of an Al 6061 T6 Alloy, Procedia Engineering, 2011, 10, p 3477-3482

    Article  Google Scholar 

  56. R.G. Munro, Evaluated Material Properties for a Sintered alpha-Alumina, J. Am. Ceram. Soc., 1997, 80(8), p 1919-1928

    Article  Google Scholar 

  57. S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches, Asm. Trans. Q., 1963, 56(1), p 25-48

    Google Scholar 

  58. Z. Marciniak and K. Kuczyński, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9(9), p 609IN1613-612IN2620

    Article  Google Scholar 

  59. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31-48

    Article  Google Scholar 

  60. F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816-1825

    Article  Google Scholar 

  61. R. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast., 1999, 15(9), p 963-980

    Article  Google Scholar 

  62. S. Rahmati and A. Ghaei, The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process, J. Therm. Spray Technol., 2014, 23(3), p 530-540

    Article  Google Scholar 

  63. D.R. Lesuer, G. Kay, and M. LeBlanc, Modeling Large-Strain, High-Rate Deformation in Metals, Third Biennial Tri-Laboratory Engineering Conference on Modeling and Simulation, Lawrence Livermore National Laboratory: Pleasanton, CA (US), 2001

  64. L. Pun, Introduction to Optimization Practice, Wiley, New York, 1969

    Google Scholar 

  65. L.R. Grace and M. Altan, Characterization of Anisotropic Moisture Absorption in Polymeric Composites Using Hindered Diffusion Model, Compos. A Appl. Sci. Manuf., 2012, 43(8), p 1187-1196

    Article  Google Scholar 

  66. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge Cambridgeshire; New York, 1985, p 452

    Book  Google Scholar 

  67. B. Yildirim, H. Yang, A. Gouldstone, and S. Müftü, Rebound Mechanics of Micrometre-Scale, Spherical Particles in High-Velocity Impacts, Proc. R. Soc. A., 2017, 473, p 20160936

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Müftü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Alizadeh, A., Xie, W. et al. High-Strain-Rate Material Behavior and Adiabatic Material Instability in Impact of Micron-Scale Al-6061 Particles. J Therm Spray Tech 27, 641–653 (2018). https://doi.org/10.1007/s11666-018-0712-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0712-4

Keywords

Navigation