Skip to main content
Log in

Preparation and Thermophysical Properties of CeO2-Gd2O3 Costabilized Zirconia Thermal Barrier Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Solution precursor plasma spray is a novel coating deposition method in which an aqueous chemical precursor feedstock is injected into a plasma torch to deposit coatings. In this study, a 16 mol.% CeO2-4 mol.% Gd2O3 (16Ce-4Gd)-costabilized ZrO2 (CGZ) thermal barrier coating was deposited by using the solution precursor plasma spray. The crystallization process and pyrolysis products of the CGZ solution precursor powder were evaluated by synchronous thermal analysis coupled with Fourier transform infrared spectroscopy and quadrupole mass spectrometry. The phase composition and stability were characterized by x-ray diffraction and Raman spectra. The crystallization and decomposition of ZrO2 in the precursor powder mainly occurred below 600 °C. The CGZ coating showed good phase stability, and no m-ZrO2 was detected in the as-sprayed coating and after 200 h of heat treatment at 1400 °C. The thermal conductivity of the CGZ coating was ~ 0.82 to 0.96 W m−1 k−1, which is at least 50% lower than that of the 8YSZ coating. The thermal expansion coefficients of the CGZ coating were higher and more stable than those of the 8YSZ coating for all temperature ranges. The thermal cycling lifetime of the CGZ coating was ~ 620 cycles in a 1-h furnace cycling test at 1121 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  CAS  Google Scholar 

  2. M.J. Pomeroy, Coatings for Gas Turbine Materials and Long Term Stability Issues, Mater. Des., 2005, 26(3), p 223-231

    Article  CAS  Google Scholar 

  3. F. Zhou, W. You, Z. Cui, W. Liang, J. Gou, Q. Zhang, and C. Wang, Thermal Cycling Behavior of Nanostructured 8YSZ, SZ/8YSZ and 8CSZ/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2017, 5(5), p 4102-4111

    Article  Google Scholar 

  4. U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int J. Appl. Ceram. Technol., 2010, 1(4), p 302-315

    Article  Google Scholar 

  5. W.A. Nelson and R.M. Orenstein, TBC Experience in Land-Based Gas Turbines, J. Therm. Spray Technol., 1997, 6(2), p 176-180

    Article  CAS  Google Scholar 

  6. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    Article  CAS  Google Scholar 

  7. S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Engineered Thermal Barrier Coatings Deposited by Suspension Plasma Spray, Mater. Lett., 2017, 209, p 517-521

    Article  CAS  Google Scholar 

  8. J. Wang, J. Sun, J. Yuan, Q. Jing, S. Dong, L. Bing, Z. Hao, L. Deng, J. Jiang, and Z. Xin, Phase Stability, Thermo-Physical Properties and Thermal Cycling Behavior of Plasma-Sprayed CTZ, CTZ/YSZ Thermal Barrier Coatings, Ceram. Int., 2018, 44, p 9353-9363

    Article  CAS  Google Scholar 

  9. S. Sodeoka, M. Suzuki, K. Ueno, H. Sakuramoto, T. Shibata, and M. Ando, Thermal and Mechanical Properties of ZrO2-CeO2 Plasma-Sprayed Coatings, J. Therm. Spray Technol., 1997, 6(3), p 361-367

    Article  CAS  Google Scholar 

  10. K. Jiang, S. Liu, and W. Xi, Effect of High-Temperature Aging on the Fracture Toughness of 40 mol% Ceria-Stabilized Zirconia, J. Am. Ceram. Soc., 2014, 98(1), p 331-337

    Article  Google Scholar 

  11. L. Alan, D. Zehui, G. Chee Lip, and C.A. Schuh, Shape Memory and Superelastic Ceramics at Small Scales, Science, 2013, 341(6153), p 1505-1508

    Article  Google Scholar 

  12. K. Jiang, S. Liu, Y. Li, and Y. Li, Effects of RE3+ Ionic Radius on Monoclinic Phase Content of 8 mol% REO1.5 Partially Stabilized ZrO2 (RE = Yb, Y, Gd, and Nd) Powder Compacts after Annealing at High Temperature, J. Am. Ceram. Soc., 2013, 97(3), p 990-995

    Article  Google Scholar 

  13. M.N. Rahaman, J.R. Gross, R.E. Dutton, and H. Wang, Phase Stability, Sintering, and Thermal Conductivity of Plasma-Sprayed ZrO2-Gd2O3 Compositions for Potential Thermal Barrier Coating Applications, Acta Mater., 2006, 54(6), p 1615-1621

    Article  CAS  Google Scholar 

  14. K. Jiang, S. Liu, and X. Wang, Low-Thermal-Conductivity and High-Toughness CeO2-Gd2O3 Co-Stabilized Zirconia Ceramic for Potential Thermal Barrier Coating Applications, J. Eur. Ceram. Soc., 2018, 38(11), p 3986-3993

    Article  CAS  Google Scholar 

  15. P. Fauchais, Understanding Plasma Spraying, J. Phys. D: Appl. Phys., 2004, 37(9), p 86

    Article  Google Scholar 

  16. D. Chen, E.H. Jordan, and M. Gell, Microstructure of Suspension Plasma Spray and Air Plasma Spray Al2O3-ZrO2 Composite Coatings, J. Therm. Spray Technol., 2009, 18(3), p 421-426

    Article  CAS  Google Scholar 

  17. W. Duarte, S. Rossignol, and M. Vardelle, La2Zr2O7 (LZ) Coatings by Liquid Feedstock Plasma Spraying: The Role of Precursors, J. Therm. Spray Technol., 2014, 23(8), p 1425-1435

    Article  CAS  Google Scholar 

  18. A. Ajay, V.S. Raja, G. Sivakumar, and S.V. Joshi, Hot Corrosion Behavior of Solution Precursor and Atmospheric Plasma Sprayed Thermal Barrier Coatings, Corros. Sci., 2015, 98, p 271-279

    Article  CAS  Google Scholar 

  19. D. Chen, M. Gell, E.H. Jordan, E. Cao, and X. Ma, Thermal Stability of Air Plasma Spray and Solution Precursor Plasma Spray Thermal Barrier Coatings, J. Am. Ceram. Soc., 2010, 90(10), p 3160-3166

    Article  Google Scholar 

  20. J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, and P. Abrman, Estimation of Heat Capacities of Solid Mixed Oxides, Thermochim. Acta, 2002, 395(1), p 27-46

    Article  Google Scholar 

  21. K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2003, 342(1), p 120-130

    Article  Google Scholar 

  22. V. Singh, A. Karakoti, A. Kumar, A. Saha, S. Basu, and S. Seal, Precursor Dependent Microstructure Evolution and Nonstoichiometry in Nanostructured Cerium Oxide Coatings Using the Solution Precursor Plasma Spray Technique, J. Am. Ceram. Soc., 2010, 93(11), p 3700-3708

    Article  CAS  Google Scholar 

  23. D. Chen, E. Jordan, and M. Gell, Thermal and Crystallization Behavior of Zirconia Precursor Used in the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2007, 42(14), p 5576-5580

    Article  CAS  Google Scholar 

  24. X. Meng, E. Li, W. Huang, Y. Bai, W. Ma, and R. Wang, Thermal Decomposition and Crystallization Behavior of Double Rare-Earth Co-Doped SrZrO3 Precursor Used in the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2019, 369, p 87-94

    Article  CAS  Google Scholar 

  25. A.C. Geiculescu and H.G. Spencer, Effect of Oxygen Environment on the Decomposition and Crystallization of an Aqueous Sol-Gel Derived Zirconium Acetate Gel, J. Sol-Gel. Sci. Technol., 1999, 14(3), p 257-272

    Article  CAS  Google Scholar 

  26. V. Singh, R. Draper, and S. Seal, Effect of Processing Parameters on Cerium Oxide Coating Deposition in Solution Precursor Plasma Spray, J. Am. Ceram. Soc., 2013, 96(8), p 2437-2444

    Article  CAS  Google Scholar 

  27. E.H. Jordan, L. Xie, X. Ma, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, and P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65

    Article  CAS  Google Scholar 

  28. W. Fan and Y. Bai, Review of Suspension and Solution Precursor Plasma Sprayed Thermal Barrier Coatings, Ceram. Int., 2016, 42(13), p 14299-14312

    Article  CAS  Google Scholar 

  29. N.R. Rebollo, J.L. Ruvalcaba-Sil, and J. Miranda, Ionoluminscence of Partially-Stabilized Zirconia for Thermal Barrier Coatings, Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, 261(1–2), p 461-465

    Article  CAS  Google Scholar 

  30. J. Chevalier and L. Gremillard, The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, J. Am. Ceram. Soc., 2009, 92(9), p 1901-1920

    Article  CAS  Google Scholar 

  31. P. Cm and M. Ks, Infrared and Raman Spectra of Zirconia Polymorphs, J. Am. Ceram. Soc., 2010, 54(5), p 254-258

    Google Scholar 

  32. R.W. Trice, Y. Jennifer Su, J.R. Mawdsley, and K.T. Faber, Effect of Heat Treatment on Phase Stability, Microstructure, and Thermal Conductivity of Plasma-Sprayed YSZ, J. Mater. Sci., 2002, 37(11), p 2359-2365

    Article  CAS  Google Scholar 

  33. R.D. Shannon and C.T. Prewitt, Effective Ionic Radii in Oxides and Fluorides, Acta Crystallogr., Sect. B: Struct. Sci., 1969, 25(5), p 825-946

    Article  Google Scholar 

  34. W. Ma, X. Meng, J. Wen, E. Li, Y. Bai, W. Chen, and H. Dong, Aging Effect on Microstructure and Property of Strontium Zirconate Coating Co-Doped with Double Rare-Earth Oxides, J. Am. Ceram. Soc., 2019, 102(4), p 2143-2153

    Article  CAS  Google Scholar 

  35. J. Yang, Z. Meng, Z. Lei, Z. Wang, and P. Wei, Pronounced Enhancement of Thermal Expansion Coefficients of Rare-Earth Zirconate by Cerium Doping, Scripta Mater., 2018, 153, p 1-5

    Article  CAS  Google Scholar 

  36. K. Takagi, D. Kudo, A. Kawasaki, and Y. Harada, Microstructural Dependency of Thermal Expansion and Sintering Shrinkage in Plasma-Sprayed Zirconia Coatings, Surf. Coat. Technol., 2011, 205(19), p 4411-4417

    Article  CAS  Google Scholar 

  37. N. Schlegel, D. Sebold, Y.J. Sohn, G. Mauer, and R. Vaßen, Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test, J. Therm. Spray Technol., 2015, 27(7), p 1205-1212

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 51672136, 51865044), the Inner Mongolia Natural Science Foundation (No. 2017MS0503), Science and Technology Major Project of Inner Mongolia Autonomous Region (2018-810), and Postgraduate Research Innovation Project of Inner Mongolia Autonomous Region (B20171012810, B2018111923Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Ma or Yu Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Ma, W., Meng, X. et al. Preparation and Thermophysical Properties of CeO2-Gd2O3 Costabilized Zirconia Thermal Barrier Coating. J Therm Spray Tech 29, 115–124 (2020). https://doi.org/10.1007/s11666-019-00971-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00971-0

Keywords

Navigation