Skip to main content

Advertisement

Log in

MODWT and VMD Based Intelligent Gearbox Early Stage Fault Detection Approach

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Gearbox, a crucial constituent of any plant machinery, always requires special attention as it has to perform under considerable environmental conditions throughout its service life. Hence, the tracking of gearbox performance degradation is paramount to ensure the reliability and availability of the whole system. This performance degradation assessment is often based on the vibration-based condition monitoring program which extracts the fault signatures from the raw vibration signals. Then, based on the previous known values from ISO standards a comparative analysis is done to depict the health status of the gearbox components. However, an effective signal processing methodology is always required to detect incipient faults at a very early stage as the actual fault signature is generally masked under environmental noise and considered to be difficult to extract. Hence, this paper proposes an intelligent gear fault diagnosis methodology based on Maximal Overlap Discrete Wavelet Transform and Variational Mode Decomposition (VMD) to identify the incipient fault signatures at a very early stage. To check the performance of the proposed methodology, different classifiers performance such as Support Vector Machine, Decision Tree, Ensemble Tree, Naive Bayes, and k-Nearest Neighbor are also depicted and compared. Results shows that the VMD-based signal processing technique extracts the hidden faulty signature and helps to accurately classify the fault stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S. Wang, X. Chen, C. Tong, Z. Zhao, Matching synchrosqueezing wavelet transform and application to aeroengine vibration monitoring. IEEE Trans. Instrum. Meas. 66(2), 360–372 (2016)

    Article  Google Scholar 

  2. H. Shao, H. Jiang, H. Zhang, T. Liang, Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network. IEEE Trans. Industr. Electron. 65(3), 2727–2736 (2017)

    Article  Google Scholar 

  3. Z. Hameed, Y. Hong, Y. Cho, S. Ahn, C. Song, Condition monitoring and fault detection of wind turbines and related algorithms: a review. Renew. Sustain. Energy Rev. 13(1), 1–39 (2009)

    Article  Google Scholar 

  4. Y. Lei, J. Lin, M.J. Zuo, Z. He, Condition monitoring and fault diagnosis of planetary gearboxes: a review. Measurement 48, 292–305 (2014)

    Article  Google Scholar 

  5. W. Liu, B. Tang, J. Han, X. Lu, N. Hu, Z. He, The structure healthy condition monitoring and fault diagnosis methods in wind turbines: a review. Renew. Sustain. Energy Rev. 44, 466–472 (2015)

    Article  CAS  Google Scholar 

  6. H.D.M. de Azevedo, A.M. Araújo, N. Bouchonneau, A review of wind turbine bearing condition monitoring: state of the art and challenges. Renew. Sustain. Energy Rev. 56, 368–379 (2016)

    Article  Google Scholar 

  7. W. Bartelmus, R. Zimroz, A new feature for monitoring the condition of gearboxes in non-stationary operating conditions. Mech. Syst. Signal Process. 23(5), 1528–1534 (2009)

    Article  Google Scholar 

  8. P.D. Samuel, D.J. Pines, A review of vibration-based techniques for helicopter transmission diagnostics. J. Sound Vib. 282(1–2), 475–508 (2005)

    Article  Google Scholar 

  9. P.D. Samuel, D.J. Pines, Constrained adaptive lifting and the cal4 metric for helicopter transmission diagnostics. J. Sound Vib. 319(1–2), 698–718 (2009)

    Article  Google Scholar 

  10. I. Bhavi, G.V. Patil, V. Kuppast, Early detection of failure of spiral bevel gears used in differential gearbox. J. Fail. Anal. Prev. 1–6 (2021)

  11. R.U. Maheswari, R. Umamaheswari, Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train-a contemporary survey. Mech. Syst. Signal Process. 85, 296–311 (2017)

    Article  Google Scholar 

  12. Vanraj, S. Dhami, B. Pabla, Optimization of sound sensor placement for condition monitoring of fixed-axis gearbox. Cogent Eng. 4(1), 1345673 (2017). https://doi.org/10.1080/23311916.2017.1345673

  13. A. Kumar, C. Gandhi, Y. Zhou, R. Kumar, J. Xiang, Latest developments in gear defect diagnosis and prognosis: a review. Measurement 158, 107735 (2020)

    Article  Google Scholar 

  14. I. Vamsi, G. Sabareesh, P. Penumakala, Comparison of condition monitoring techniques in assessing fault severity for a wind turbine gearbox under non-stationary loading. Mech. Syst. Signal Process. 124, 1–20 (2019)

    Article  Google Scholar 

  15. P. Henriquez, J.B. Alonso, M.A. Ferrer, C.M. Travieso, Review of automatic fault diagnosis systems using audio and vibration signals. IEEE Trans. Syst. Man Cybern. Syst. 44(5), 642–652 (2013)

    Article  Google Scholar 

  16. E.S. Sarvestani, M. Rezaeizadeh, E. Jomehzadeh, A. Bigani, Early detection of industrial-scale gear tooth surface pitting using vibration analysis. J. Fail. Anal. Prev. 20, 768–788 (2020)

    Article  Google Scholar 

  17. D.S. Chandra, Y.S. Rao, Fault diagnosis of a double-row spherical roller bearing for induction motor using vibration monitoring technique. J. Fail. Anal. Prev. 19(4), 1144–1152 (2019)

    Article  Google Scholar 

  18. J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, D. Siegel, Prognostics and health management design for rotary machinery systems-reviews, methodology and applications. Mech. Syst. Signal Process. 42(1–2), 314–334 (2014)

    Article  Google Scholar 

  19. Vanraj, D. Goyal, A. Saini, S.S. Dhami, B. Pabla, Intelligent predictive maintenance of dynamic systems using condition monitoring and signal processing techniques–a review. In 2016 International Conference on Advances in Computing, Communication, Automation (ICACCA) (Spring) (IEEE, 2016), pp. 1–6.

  20. S.W. Wegerich, A. Wilks, R. Pipke, Nonparametric modeling of vibration signal features for equipment health monitoring. In: Proceedings of the IEEE aerospace conference, vol. 7 ( Citeseer, 2003), pp. 3113–3121

  21. D.S. Ramteke, A. Parey, R.B. Pachori, Automated gear fault detection of micron level wear in bevel gears using variational mode decomposition. J. Mech. Sci. Technol. 33(12), 5769–5777 (2019)

    Article  Google Scholar 

  22. M. Hosseinpour-Zarnaq, M. Omid, E. Biabani-Aghdam, Fault diagnosis of tractor auxiliary gearbox using vibration analysis and random forest classifier. Inf. Process. Agric. (2021)

  23. Vanraj, S.S. Dhami, B.S. Pabla, Non-contact incipient fault diagnosis method of fixed-axis gearbox based on ceemdan. R. Soci. Open Sci. 4(8), 170616 (2017). https://doi.org/10.1098/rsos.170616

  24. Vanraj, R. Singh, S.S. Dhami, B.S. Pabla, Development of low-cost non-contact structural health monitoring system for rotating machinery. R. Soc. Open Sci. 5(6), 172430 (2018). https://doi.org/10.1098/rsos.172430

  25. H.H. Lin, D.P. Townsend, F.B. Oswald, Prediction of gear dynamics using fast fourier transform of static transmission error. J. Struct. Mech. 21(2), 237–260 (1993)

    Google Scholar 

  26. D.H. Lee, J. Lee, J.W. Ahn, Mechanical vibration reduction control of two-mass permanent magnet synchronous motor using adaptive notch filter with fast fourier transform analysis. IET Electr. Power Appl. 6(7), 455–461 (2012)

    Article  Google Scholar 

  27. S. Abdullah, C. Nizwan, M. Nuawi, A study of fatigue data editing using the short-time fourier transform (stft). Am. J. Appl. Sci. 6(4), 565 (2009)

    Article  Google Scholar 

  28. H. Gao, L. Liang, X. Chen, G. Xu, Feature extraction and recognition for rolling element bearing fault utilizing short-time fourier transform and non-negative matrix factorization. Chin. J. Mech. Eng. 28(1), 96–105 (2015)

    Article  Google Scholar 

  29. W.J. Staszewski, K. Worden, G.R. Tomlinson, Time-frequency analysis in gearbox fault detection using the wigner-ville distribution and pattern recognition. Mech. Syst. Signal Process. 11(5), 673–692 (1997)

    Article  Google Scholar 

  30. N. Baydar, A. Ball, A comparative study of acoustic and vibration signals in detection of gear failures using wigner-ville distribution. Mech. Syst. Signal Process. 15(6), 1091–1107 (2001)

    Article  Google Scholar 

  31. M. Irfan, N. Saad, A. Alwadie, M. Awais, M.A. Sheikh, A. Glowacz, V. Kumar, An automated feature extraction algorithm for diagnosis of gear faults. J. Fail. Anal. Prev. 19(1), 98–105 (2019)

    Article  Google Scholar 

  32. C. Capdessus, M. Sidahmed, J. Lacoume, Cyclostationary processes: application in gear faults early diagnosis. Mech. Syst. Signal Process. 14(3), 371–385 (2000)

    Article  Google Scholar 

  33. J. Lin, M.J. Zuo, Extraction of periodic components for gearbox diagnosis combining wavelet filtering and cyclostationary analysis. J. Vib. Acoust. 126(3), 449–451 (2004)

    Article  Google Scholar 

  34. Z. Zhu, Z. Feng, F. Kong, Cyclostationarity analysis for gearbox condition monitoring: approaches and effectiveness. Mech. Syst. Signal Process. 19(3), 467–482 (2005)

    Article  Google Scholar 

  35. V. Sharma, A. Parey, Gear crack detection using modified tsa and proposed fault indicators for fluctuating speed conditions. Measurement 90, 560–575 (2016)

    Article  Google Scholar 

  36. H. Li, Y. Zhang, H. Zheng, Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network. J. Mech. Sci. Technol. 23(10), 2780–2789 (2009)

    Article  Google Scholar 

  37. V. Sharma, A. Parey, Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed. Eng. Fail. Anal. 107, 104204 (2020)

    Article  Google Scholar 

  38. Vanraj, S. Dhami, B. Pabla, Hybrid data fusion approach for fault diagnosis of fixed-axis gearbox. Struct. Health Monit. 17(4), 936–945 (2018)

  39. Y. Lei, J. Lin, Z. He, M.J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35(1–2), 108–126 (2013)

    Article  Google Scholar 

  40. D. Han, N. Zhao, P. Shi, Gear fault feature extraction and diagnosis method under different load excitation based on emd, pso-svm and fractal box dimension. J. Mech. Sci. Technol. 33(2), 487–494 (2019)

    Article  Google Scholar 

  41. H. Zhao, H. Liu, J. Xu, C. Guo, W. Deng, Research on a fault diagnosis method of rolling bearings using variation mode decomposition and deep belief network. J. Mech. Sci. Technol. 33(9), 4165–4172 (2019)

    Article  Google Scholar 

  42. R. Yan, R.X. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96, 1–15 (2014)

    Article  Google Scholar 

  43. B. Merainani, D. Benazzouz, C. Rahmoune, Early detection of tooth crack damage in gearbox using empirical wavelet transform combined by hilbert transform. J. Vib. Control 23(10), 1623–1634 (2017)

    Article  Google Scholar 

  44. Y. Yang, Y. He, J. Cheng, D. Yu, A gear fault diagnosis using hilbert spectrum based on modwpt and a comparison with emd approach. Measurement 42(4), 542–551 (2009)

    Article  Google Scholar 

  45. P.W. Shan, M. Li, Nonlinear time-varying spectral analysis: Hht and modwpt. Math. Probl. Eng. 2010 (2010)

  46. X. An, H. Zeng, C. Li, Envelope demodulation based on variational mode decomposition for gear fault diagnosis. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 231(4), 864–870 (2017)

    Article  Google Scholar 

  47. D.S. Vanraj, B. Pabla, Non-contact incipient fault diagnosis method of fixed-axis gearbox based on ceemdan. R. Soc. Open Sci. 4(8), 170616 (2017)

    Article  CAS  Google Scholar 

  48. J. Hu, J. Wang, L. Xiao, A hybrid approach based on the gaussian process with t-observation model for short-term wind speed forecasts. Renew. Energy 114, 670–685 (2017)

    Article  Google Scholar 

  49. R.U. Maheswari, R. Umamaheswari, Application of wavelet synchrosqueezing transform for wind turbine gearbox fault diagnosis. In: 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (IEEE , 2016), pp. 1–4

  50. V. Sharma, A. Parey, Performance evaluation of decomposition methods to diagnose leakage in a reciprocating compressor under limited speed variation. Mech. Syst. Signal Process. 125, 275–287 (2019)

    Article  Google Scholar 

  51. A. Joshuva, R.S. Kumar, S. Sivakumar, G. Deenadayalan, R. Vishnuvardhan, An insight on vmd for diagnosing wind turbine blade faults using c4. 5 as feature selection and discriminating through multilayer perceptron. Alex. Eng. J. 59(5), 3863–3879 (2020)

    Article  Google Scholar 

  52. M. Zhang, Z. Jiang, K. Feng, Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump. Mech. Syst. Signal Process. 93, 460–493 (2017)

    Article  Google Scholar 

  53. X. An, Y. Tang, Application of variational mode decomposition energy distribution to bearing fault diagnosis in a wind turbine. Trans. Inst. Meas. Control. 39(7), 1000–1006 (2017)

    Article  Google Scholar 

  54. X. An, L. Pan, Bearing fault diagnosis of a wind turbine based on variational mode decomposition and permutation entropy. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 231(2), 200–206 (2017)

    Google Scholar 

  55. W. Liu, S. Cao, Y. He, Ground roll attenuation using variational mode decomposition. In 77th EAGE Conference and Exhibition 2015, vol. 2015 (European Association of Geoscientists & Engineers, 2015)

  56. C. Aneesh, S. Kumar, P. Hisham, K. Soman, Performance comparison of variational mode decomposition over empirical wavelet transform for the classification of power quality disturbances using support vector machine. Proc. Comp. Sci. 46, 372–380 (2015)

    Article  Google Scholar 

  57. S. Lahmiri, Comparative study of ecg signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc. Technol. Lett. 1(3), 104–109 (2014)

    Article  Google Scholar 

  58. J.D. Wu, C.C. Hsu, Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference. Expert Syst. Appl. 36(2), 3785–3794 (2009)

    Article  Google Scholar 

  59. G. Cao, W. Xu, Nonlinear structure analysis of carbon and energy markets with mfdcca based on maximum overlap wavelet transform. Phys. A 444, 505–523 (2016)

    Article  Google Scholar 

  60. B. Patnaik, M. Mishra, R.C. Bansal, R.K. Jena, Modwt-xgboost based smart energy solution for fault detection and classification in a smart microgrid. Appl. Energy 285, 116457 (2021)

    Article  Google Scholar 

  61. O. Ozgonenel, S. Karagol, Maximum overlap discrete wavelet based transformer differential protection. In 2017 25th Signal Processing and Communications Applications Conference (SIU) (IEEE, 2017), pp. 1–4

  62. L. Duan, M. Xie, J. Wang, T. Bai, Deep learning enabled intelligent fault diagnosis: overview and applications. J. Intell. Fuzzy Syst. 35(5), 5771–5784 (2018)

    Article  Google Scholar 

  63. R. Liu, B. Yang, E. Zio, X. Chen, Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 108, 33–47 (2018)

    Article  Google Scholar 

  64. S. Khan, T. Yairi, A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 107, 241–265 (2018)

    Article  Google Scholar 

  65. D. Goyal, Pabla B. Vanraj, S. Dhami, Condition monitoring parameters for fault diagnosis of fixed axis gearbox: a review. Arch. Comput. Methods Eng. 24(3), 543–556 (2017)

    Article  Google Scholar 

  66. Vanraj, S.S. Dhami, B. Pabla, Gear fault classification using vibration and acoustic sensor fusion: a case study. In 2018 Condition Monitoring and Diagnosis (CMD) (2018), pp. 1–6. https://doi.org/10.1109/CMD.2018.8535974

  67. C. Cortes, V. Vapnik, Support network vectors. Mach. Learn. 20, 273–297 (1995)

    Article  Google Scholar 

  68. P. Gangsar, R. Tiwari, Multiclass fault taxonomy in rolling bearings at interpolated and extrapolated speeds based on time domain vibration data by svm algorithms. J. Fail. Anal. Prev. 14(6), 826–837 (2014)

    Article  Google Scholar 

  69. Vanraj, S.S. Dhami, B. Pabla, Sound emission based sensor location optimization in fixed axis gearbox using support vector machines. In Communication and Computing Systems: Proc. Int. Conf. on Communication and Computing Systems (2016), pp. 867–872

  70. R.S. Gunerkar, A.K. Jalan, S.U. Belgamwar, Fault diagnosis of rolling element bearing based on artificial neural network. J. Mech. Sci. Technol. 33(2), 505–511 (2019)

    Article  Google Scholar 

  71. T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  72. L. Zhu, Y. Wang, Q. Fan, Modwt-arma model for time series prediction. Appl. Math. Model. 38(5–6), 1859–1865 (2014)

    Article  Google Scholar 

  73. Y. Seo, Y. Choi, J. Choi, River stage modeling by combining maximal overlap discrete wavelet transform, support vector machines and genetic algorithm. Water 9(7), 525 (2017)

    Article  Google Scholar 

  74. P. Shi, W. Yang, Precise feature extraction from wind turbine condition monitoring signals by using optimised variational mode decomposition. IET Renew. Power Gener. 11(3), 245–252 (2017)

    Article  Google Scholar 

  75. F.I. Muhd, S.L. Muhd, H.L. Meng, A.A. Zair, Variational mode decomposition for rotating machinery condition monitoring using vibration signals. Trans. Nanjing Univ. Aeronaut. Astronaut. 35(1), 38–50 (2018)

    Google Scholar 

  76. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2013)

    Article  Google Scholar 

  77. W. Liu, S. Cao, Y. Chen, Applications of variational mode decomposition in seismic time-frequency analysis. Geophysics 81(5), V365–V378 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansi, Saini, K., Vanraj et al. MODWT and VMD Based Intelligent Gearbox Early Stage Fault Detection Approach. J Fail. Anal. and Preven. 21, 1821–1837 (2021). https://doi.org/10.1007/s11668-021-01228-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01228-1

Keywords

Navigation