Skip to main content
Log in

Thermodynamic Database for the Al-Ca-Co-Cr-Fe-Mg-Mn-Ni-Si-O-P-S System and Applications in Ferrous Process Metallurgy

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Computerized thermodynamic databases for solid and liquid metals, slag, and solid oxide phases in the Al2O3-CaO-CoO-CrO-Cr2O3-FeO-Fe2O3-MgO-MnO-NiO-SiO2 system (with dissolved S and P) have been developed by critical evaluation/optimization of various available phase equilibrium and thermodynamic data. The databases contain parameters of models specifically developed for molten slags, liquid steel, and solid oxide solutions such as spinel, pyroxenes, olivine, monoxide (wustite, periclase, lime), corundum, etc. By means of the optimization process, model parameters are found which reproduce various thermodynamic and phase equilibrium data within experimental error limits. Furthermore, the models permit extrapolation into regions of temperature and composition where data are not available. The databases are automatically accessed by user-friendly software that calculates complex equilibria involving slag, metals, refractories, and gases simultaneously, for systems with many components, over wide ranges of temperature, oxygen potential, and pressure. A short review of the available databases is presented. The critical evaluation/optimization procedure is outlined using the Al2O3-CaO-FeO-Fe2O3-MgO-SiO2 and Al2O3-CaO-MnO-SiO2 systems as examples. Several applications of the databases to deoxidation, dehydrogenation, and dephosphorization of iron and to inclusion control in steel are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. FactSage, Ecole Polytechnique, Montréal, http://www.factsage.com/, 2008

  2. A.D. Pelton and M. Blander, Thermodynamic Analysis of Ordered Liquid Solutions by a Modified Quasi-Chemical Approach. Application to Silicate Slags, Metall. Trans. B, 1986, 17, p 805-815

    Article  Google Scholar 

  3. A.D. Pelton, S.A. Decterov, G. Eriksson, C. Robelin, and Y. Dessureault, The Modified Quasichemical Model. I—Binary Solutions, Metall. Mater. Trans. B, 2000, 31(4), p 651-659

    Article  Google Scholar 

  4. A.D. Pelton and P. Chartrand, The Modified Quasichemical Model. II—Multicomponent Solutions, Metall. Mater. Trans. A, 2001, 32(6), p 1355-1360

    Article  Google Scholar 

  5. M. Hillert, B. Jansson, and B. Sundman, Application of the Compound-Energy Model to Oxide Systems, Z. Metallkd., 1988, 79(2), p 81-87

    Google Scholar 

  6. S.A. Decterov, E. Jak, P.C. Hayes, and A.D. Pelton, Experimental Study and Thermodynamic Optimization of the Fe-Zn-O System, Metall. Mater. Trans. B, 2001, 32(4), p 643-657

    Article  Google Scholar 

  7. A.D. Pelton, Thermodynamic Calculations of Chemical Solubilities of Gases in Oxide Melts and Glasses, Glastech. Ber., 1999, 72(7), p 214-226

    Google Scholar 

  8. A.D. Pelton, G. Eriksson, and A. Romero-Serrano, Calculation of Sulfide Capacities of Multicomponent Slags, Metall. Trans. B, 1993, 24, p 817-825

    Article  Google Scholar 

  9. I.-H. Jung, S.A. Decterov, and A.D. Pelton, A Thermodynamic Model for Deoxidation Equilibria in Steel, Metall. Mater. Trans. B, 2004, 35(3), p 493-507

    Article  Google Scholar 

  10. Scientific Group Thermodata Europe, http://www.sgte.org/, 2008

  11. P. Spencer, personal communication, 2007

  12. S.A. Decterov, I.-H. Jung, E. Jak, Y.-B. Kang, P. Hayes, and A.D. Pelton, Thermodynamic Modeling of the Al2O3-CaO-CoO-CrO-Cr2O3-FeO-Fe2O3-MgO-MnO-NiO-SiO2-S System and Applications in Ferrous Process Metallurgy, SAIMM Symposium Series S36 (VII International Conference on Molten Slags, Fluxes & Salts), C. Pistorius, Ed., The South African Institute of Mining and Metallurgy, Johannesburg, Republic of South Africa, 2004, p 839-850

  13. W.C. Allen and R.B. Snow, The Orthosilicate-Iron Oxide Portion of the System CaO-“FeO”-SiO2, J. Am. Ceram. Soc., 1955, 38(8), p 264-280

    Article  Google Scholar 

  14. E. Görl, F. Oeters, and R. Scheel, Balances Between Hot Metal and Saturated Slags of the CaO-FeOn-SiO2 System, Taken with Sulphur Distribution, Arch. Eisenhuettenwes., 1966, 37(6), p 441-445

    Google Scholar 

  15. N.L. Bowen, J.F. Schairer, and E. Psnjak, The System CaO-FeO-SiO2, Am. J. Sci., 1933, 26, p 191-284

    Google Scholar 

  16. B. Zhao, E. Jak, and P. Hayes, Personal communication, Pyrometallurgy Research Centre, The University of Queensland, http://pyrosearch.minmet.uq.edu.au/, 2003

  17. I.-H. Jung, S.A. Decterov, and A.D. Pelton, Critical Thermodynamic Evaluation and Optimization of the MgO-Al2O3, CaO-MgO-Al2O3 and MgO-Al2O3-SiO2 Systems, J. Phase Equilib., 2004, 25(4), p 329-345

    Google Scholar 

  18. I.-H. Jung, S.A. Decterov, and A.D. Pelton, Critical Thermodynamic Evaluation and Optimization of the FeO-Fe2O3-MgO-SiO2 System, Metall. Mater. Trans. B, 2004, 38(5), p 877-889

    Article  Google Scholar 

  19. I.-H. Jung, S.A. Decterov, and A.D. Pelton, Critical Thermodynamic Evaluation and Optimization of the CaO-MgO-SiO2 System, J. Eur. Ceram. Soc., 2005, 25(4), p 313-333

    Article  Google Scholar 

  20. G. Eriksson and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the CaO-Al2O3, Al2O3-SiO2, and CaO-Al2O3-SiO2 Systems, Metall. Trans. B, 1993, 24, p 807-816

    Article  Google Scholar 

  21. I.-H. Jung, Y.-B. Kang, S.A. Decterov, and A.D. Pelton, Thermodynamic Evaluation and Optimization of the MnO-Al2O3 and MnO-Al2O3-SiO2 Systems and Applications to Inclusion Engineering, Metall. Mater. Trans. B, 2004, 35(2), p 259-268

    Article  Google Scholar 

  22. Y.-B. Kang, I.-H. Jung, S.A. Decterov, A.D. Pelton, and H.-G. Lee, Critical Thermodynamic Evaluation and Optimization of the CaO-MnO-SiO2 and CaO-MnO-Al2O3 Systems, ISIJ Int., 2004, 44(6), p 965-974

    Article  Google Scholar 

  23. Y.-B. Kang, I.-H. Jung, S.A. Decterov, A.D. Pelton, and H.-G. Lee, Phase Equilibria and Thermodynamic Properties of the CaO-MnO-Al2O3-SiO2 System by Critical Evaluation, Modeling and Experiment, ISIJ Int., 2004, 44(6), p 975-983

    Article  Google Scholar 

  24. G. Eriksson, P. Wu, M. Blander, and A.D. Pelton, Critical Evaluation and Optimisation of the Thermodynamic Properties and Phase Diagrams of the MnO-SiO2 and CaO-SiO2 Systems, Can. Metall. Q., 1994, 33(1), p 13-21

    Google Scholar 

  25. P. Wu, G. Eriksson, and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the Calcia-Iron(II) Oxide, Calcia-Magnesia, Calcia-Manganese(II) Oxide, Iron(II) Oxide-Magnesia, Iron(II) Oxide-Manganese(II) Oxide, and Magnesia-Manganese(II) Oxide Systems, J. Am. Ceram. Soc., 1993, 76(8), p 2065-2075

    Article  Google Scholar 

  26. K.T. Jacob, Revision of Thermodynamic Data on MnO-Al2O3 Melts, Can. Metall. Q., 1981, 20(1), p 89-92

    Google Scholar 

  27. W. Oelsen and G. Heynert, Die Reaktionen zwischen Eisen-Mangan-Schmelzen und den Schmelzen ihrer Aluminate, Arch. Eisenhuettenwes., 1955, 26(10), p 567-575

    Google Scholar 

  28. M. Timucin and A. Muan, Activity-Composition Relations in NiAl2O4-MnAl2O4 Solid Solutions and Stabilities of NiAl2O4 and MnAl2O4 at 1300 and 1400°C, J. Am. Ceram. Soc., 1992, 75, p 1399-1406

    Article  Google Scholar 

  29. L.M. Lenev and I.A. Novokhatskii, Constitutional Diagram of the System MnO-Al2O3 and the Thermodynamic Properties of MgAl2O4, Izvest. Akad. Nauk SSSR. Metal., 1966, 3(3), p 73-78

    Google Scholar 

  30. S. Dimitrov, A. Weyl, and D. Janke, Control of the Manganese-Oxygen Reaction in Pure Iron Melts, Steel Res., 1995, 66, p 87-92

    Google Scholar 

  31. Y. Zhao, K. Morita, and N. Sano, Thermodynamic Properties of the MgAl2O4-MnAl2O4 Spinel Solid Solution, Metall. Trans. B, 1995, 26, p 1013-1017

    Article  Google Scholar 

  32. C.K. Kim and A. McLean, Thermodynamics of Iron-Manganese Aluminate Spinel Inclusions in Steel, Metall. Trans. B, 1979, 10(4), p 575-584

    Article  Google Scholar 

  33. I. Barin, Thermodynamic Data for Pure Substances, VCH, Weinheim, Germany, 1989

    Google Scholar 

  34. R.A. Sharma and F.D. Richardson, Activities of Manganese Oxide, Sulfide Capacities, and Activity Coefficients in Aluminate and Silicate Melts, Trans. Metall. Soc. AIME, 1965, 233(8), p 1586-1592

    Google Scholar 

  35. T. Fujisawa and H. Sakao, Equilibrium Between Manganese Oxide-Silicon-Dioxide-Aluminum Oxide-Iron(II) Oxide Slags and Liquid Steel, Tetsu to Hagane, 1977, 63(9), p 1504-1511

    Google Scholar 

  36. H. Ohta and H. Suito, Activities in MnO-SiO2-Al2O3 Slags and Deoxidation Equilibria of Mn and Si, Metall. Mater. Trans. B, 1996, 27(2), p 263-270

    Article  Google Scholar 

  37. G. Roghani, E. Jak, and P. Hayes, Phase Equilibrium Studies in the “MnO”-Al2O3-SiO2 System, Metall. Mater. Trans. B, 2002, 33(6), p 827-838

    Article  Google Scholar 

  38. Y.-B. Kang and H.-G. Lee, Inclusions Chemistry for Mn/Si Deoxidized Steels: Thermodynamic Predictions and Experimental Confirmations, ISIJ Int., 2004, 44(6), p 1006-1015

    Article  Google Scholar 

  39. H. Sakao, A Thermodynamic Study on Complex Deoxidation in Molten Steel—Si-Mn-Al Type Complex Oxide, Tetsu to Hagane, 1970, 56, p S621-S624

    Google Scholar 

  40. D.-H. Woo, Y.-B. Kang, and H.-G. Lee, Thermodynamic Study of MnO-SiO2-Al2O3 Slag System: Liquidus Lines and Activities of MnO at 1823 K, Metall. Mater. Trans. B, 2002, 33(6), p 915-920

    Article  Google Scholar 

  41. W. Ding and S.E. Olsen, Reactions Between Multicomponent Slags and Mn-Fe-Si-C alloys. Equilibrium and Stoichiometry, Scand. J. Metall., 1996, 25, p 232-243

    Google Scholar 

  42. A.N. Grundy, I.-H. Jung, S.A. Decterov, and A.D. Pelton, A Model to Calculate the Viscosity of Silicate Melts. Part II.: Viscosity of the Multicomponent NaO0.5-MgO-CaO-AlO1.5-SiO2 System, Int. J. Mater. Res., 2008, 99(11), p 1195-1209

    Google Scholar 

  43. A.N. Grundy, H.-C. Liu, I.-H. Jung, S.A. Decterov, and A.D. Pelton, A Model to Calculate the Viscosity of Silicate Melts. Part I.: Viscosity of Binary SiO2-MeO x Systems (Me = Na, K, Ca, Mg, Al), Int. J. Mater. Res., 2008, 99(11), p 1185-1194

    Google Scholar 

  44. A.D. Pelton and M. Blander, Computer-Assisted Analysis of the Thermodynamic Properties and Phase Diagrams of Slags, Proceedings of the Second International Symposium on Metallurgical Slags and Fluxes, H.A. Fine and D.R. Gaskell, Ed., TMS-AIME, Warrendale, PA, 1984, p 281-294

    Google Scholar 

  45. I.-H. Jung, Thermodynamic Modeling of Gas Solubility in Molten Slags (I)—Carbon and Nitrogen, ISIJ Int., 2006, 46(11), p 1577-1586

    Article  Google Scholar 

  46. I.-H. Jung, Thermodynamic Modeling of Gas Solubility in Molten Slags (II)—Water, ISIJ Int., 2006, 46(11), p 1587-1593

    Article  Google Scholar 

  47. E. Schuermann, H.P. Kaiser, and U. Hensgen, Calorimetry and Thermodynamics of the System Iron-Phosphorus, Arch. Eisenhuttenwes., 1981, 52(2), p 51-55

    Google Scholar 

  48. A.I. Zaitsev, Zh.V. Dobrokhotova, A.D. Litvina, and B.M. Mogutnov, Thermodynamic Properties and Phase Equilibria in the Fe-P System, J. Chem. Soc., Faraday Trans., 1995, 91(4), p 703-712

    Article  Google Scholar 

  49. C. Wagner, Thermodynamics of Alloys, Addison-Wesley, Reading, MA, 1962, p 51

    Google Scholar 

  50. V.G. Plotnichenko, V.O. Sokolov, V.V. Koltashev, and E.M. Dianov, On the Structure of Phosphosilicate Glasses, J. Noncryst. Solids, 2002, 306(3), p 209-226

    Article  ADS  Google Scholar 

  51. S. Banya and T. Watanabe, Thermodynamics of Iron Oxide (FetO)-Phosphorus Pentoxide Slags Saturated with Solid Iron, Tetsu to Hagane, 1977, 63(12), p 1809-1818

    Google Scholar 

  52. R. Nagabayashi, M. Hino, and S. Banya, Distribution of Phosphorus between Liquid Iron and FetO-(CaO + MgO)-(SiO2 + P2O5) Phosphate Slags, Tetsu to Hagane, 1988, 74(9), p 1770-1777

    Google Scholar 

  53. J.-D. Seo and S.-H. Kim, Thermodynamic Assessment of Al, Mg, and Ca Deoxidation Reaction for the Control of Alumina Inclusion in Liquid Steel, Bull. Korean Inst. Metall. Mater. (Korea), 1999, 12(3), p 402-411

    Google Scholar 

  54. S. Gustafsson and P.O. Mellberg, On the Free Energy Interaction Between Some Strong Deoxidizers, Especially Calcium and Oxygen in Liquid Iron, Scand. J. Metall., 1980, 9(3), p 111-116

    Google Scholar 

  55. T. Ototani, Y. Kataura, and T. Degawa, Deoxidation of Liquid Iron and Its Alloys by Calcium Contained in Lime Crucible, ISIJ Trans., 1976, 16(5), p 275-282

    Google Scholar 

  56. Y. Miyashita and K. Nishikawa, Deoxidation of Molten Iron with Calcium, Tetsu to Hagane, 1971, 57(13), p 1969-1975

    Google Scholar 

  57. Q. Han, X. Zhang, D. Chen, and P. Wang, The Calcium-Phosphorus and the Simultaneous Calcium-Oxygen and Calcium-Sulfur Equilibria in Liquid Iron, Metall. Trans. B, 1988, 19(4), p 617

    Article  Google Scholar 

  58. M. Ozawa, The Japan Society for the Promotion of Science, 19th Committee paper No. 9837, Iron Steel Institute of Japan, Tokyo, 1975, p 6

  59. Steelmaking Data Sourcebook, Japan Society for the Promotion of Science, 19th Comm. on Steelmaking, Gordon & Breach Science, New York, 1988

  60. H. Itoh, M. Hino, and S. Ban-Ya, Thermodynamics on the Formation of Spinel Nonmetallic Inclusion in Liquid Steel, Metall. Mater. Trans. B, 1997, 28(5), p 953-956

    Article  Google Scholar 

  61. M. Nadif and C. Gatellier, Effect of Addition of Calcium or Magnesium on the Solubility of Oxygen and Sulfur in Liquid Steel, Rev. Metall. CIT, 1986, 83, p 377-394

    Google Scholar 

  62. S.W. Cho and H. Suito, Assessment of Calcium-Oxygen Equilibrium in Liquid Iron, ISIJ Int., 1994, 34(3), p 265-269

    Article  Google Scholar 

  63. E.T. Turkdogan, Possible Failure of emf Oxygen Sensor in Liquid Iron Containing Dissolved Calcium or Magnesium, Steel Res., 1991, 62(9), p 379-382

    Google Scholar 

  64. N.A. Gokcen and J. Chipman, Aluminum-Oxygen Equilibrium in Liquid Iron, Trans. AIME, 1953, 194, p 173-178

    Google Scholar 

  65. A. McLean and H.B. Bell, Experimental Study of the Reaction Al2O3 + 3H2 ⇌ 3H2O + 2Al, J. Iron Steel Inst., 1965, 203(2), p 123-138

    Google Scholar 

  66. R.J. Fruehan, Activities in Liquid Iron-Aluminum-Oxygen and Iron-Titanium-Oxygen Alloys, Metall. Trans., 1970, 1(12), p 3403-3410

    Google Scholar 

  67. D. Janke and W.A. Fisher, Deoxidation Equilibria of Titanium, Aluminum and Zirconium in Iron Melts at 1600°C, Arch. Eisenhuettenwes., 1976, 47(4), p 195-198

    Google Scholar 

  68. S. Dimitrov, A. Weyl, and D. Janke, Control of the Aluminum-Oxygen Reaction in Pure Iron Melts, Steel Res., 1995, 66(1), p 3-7

    Google Scholar 

  69. J.-D. Seo, S.-H. Kim, and K.-R. Lee, Thermodynamic Assessment of the Al Deoxidation Reaction in Liquid Iron, Steel Res., 1998, 69, p 49-53

    Google Scholar 

  70. G.K. Sigworth and J.F. Elliott, Thermodynamics of Liquid Dilute Iron Alloys, Metal Sci., 1974, 8(9), p 298-310

    Google Scholar 

  71. I.-H. Jung, S.A. Decterov, and A.D. Pelton, Computer Applications of Thermodynamic Databases to Inclusion Engineering, ISIJ Int., 2004, 44(3), p 527-536

    Article  Google Scholar 

  72. K.R. Lee and H. Suito, Activities of FetO in CaO-Al2O3-SiO2-FetO (<5 Pct) Slags Saturated with Liquid Iron, Metall. Mater. Trans. B, 1994, 25(6), p 893-902

    Article  Google Scholar 

  73. E. Schurmann, U. Braun, and W. Pluschkell, Investigations on the Equilibria Between Al-Ca-O-Containing Iron Melts and CaO-Al2O3-FeOn Slags, Steel Res., 1998, 69(9), p 355-358

    Google Scholar 

  74. H. Suito, H. Inoue, and R. Inoue, Aluminium-Oxygen Liquid Iron Equilibrium Between CaO-Al2O3 Melts and Liquid Iron, ISIJ Int., 1991, 31(12), p 1381-1388

    Article  Google Scholar 

  75. H. Ichihashi and T. Ikeda, Shape Control of Inclusions, Committee on Non Inclusion Shape Control, Organization of Joint Society on Iron and Steel Basic Research, Iron Steel Institute of Japan, Tokyo, 1984

  76. T. Kimura and H. Suito, Calcium Deoxidation Equilibrium in Liquid Iron, Metall. Trans. B, 1994, 25(1), p 33-42

    Article  Google Scholar 

  77. H. Ohta and H. Suito, Deoxidation Equilibria of Calcium and Magnesium in Liquid Iron, Metall. Mater. Trans. B, 1997, 28, p 1131-1139

    Article  Google Scholar 

  78. G.M. Faulring and S. Ramalingam, Inclusion Precipitation Diagram for the Iron-Oxygen-Calcium-Aluminum System, Metall. Trans. B, 1980, 11(1), p 125-130

    Article  Google Scholar 

  79. E.T. Turkdogan, Second International Conference on Clean Steel, Balatonfüred, Hungary, 1981, p 3

  80. C. Gatellier, H. Gaye, and M. Nadif, Second International Conference on Clean Steel, Balatonfüred, Hungary, 1981, p 31

  81. T.T. Le and M. Ichikawa, Optimization of Calcium Treatment at Dofasco, Proceedings of the Second Canada-Japan Symposium on Modern Steelmaking and Casting Techniques, J.J. Jonas, J.D. Boyd, and N. Sano, Ed., CIM, Toronto, 1994, p 29-38

    Google Scholar 

Download references

Acknowledgments

Financial assistance from the Natural Sciences and Engineering Research Council of Canada through a Discovery grant and through a CRD grant in collaboration with POSCO Steel, Rio Tinto, Dupont, INCO and Teck Cominco (305883-03) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Decterov.

Additional information

This article is an invited paper selected from participants of the 14th National Conference and Multilateral Symposium on Phase Diagrams and Materials Design in honor of Prof. Zhanpeng Jin’s 70th birthday, held November 3-5, 2008, in Changsha, China. The conference was organized by the Phase Diagrams Committee of the Chinese Physical Society with Drs. Huashan Liu and Libin Liu as the key organizers. Publication in Journal of Phase Equilibria and Diffusion was organized by J.-C. Zhao, The Ohio State University; Yong Du, Central South University; and Qing Chen, Thermo-Calc Software AB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decterov, S.A., Kang, YB. & Jung, IH. Thermodynamic Database for the Al-Ca-Co-Cr-Fe-Mg-Mn-Ni-Si-O-P-S System and Applications in Ferrous Process Metallurgy. J. Phase Equilib. Diffus. 30, 443–461 (2009). https://doi.org/10.1007/s11669-009-9569-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-009-9569-z

Keywords

Navigation