Skip to main content
Log in

An Updated Thermodynamic Modeling of the Al-Zr System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic modelling of the binary Al-Zr system has been carried out using the CALPHAD approach, based on available experimental and theoretical data for phase diagram and thermodynamic properties. A set of self-consistent thermodynamic parameters was established. The liquid phase and the terminal fcc_A1(Al), bcc_A2(Zr), hcp_A3(Zr) solid solutions were treated as disordered solutions, using the Redlich-Kister expressions for the excess Gibbs energy, and the intermetallic phases were considered to be line compounds. A satisfactory agreement was achieved between the experimental data and the calculated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Fischer, NUCLEA Thermodynamic Database, Database for Corium Applications (2014) Institut de Radioprotection et Sûreté Nucléaire, St Paul lez Durance

  2. A. Laik, K. Bhanumurthy, and G.B. Kale, Intermetallics in the Zr-Al Diffusion Zone, Intermetallics, 2004, 12(1), p 69

    Article  Google Scholar 

  3. J. Murray, A. Peruzzi, and J.P. Abriata, The Al-Zr (aluminum-zirconium) System, J. Phase Equilib., 1992, 13(3), p 277-291

    Article  Google Scholar 

  4. N. Saunders and V.G. Rivlin, Thermodynamic Characterization of Al-Cr, Al-Zr and Al-Cr-Zr Alloy Systems, Mater. Sci. Technol., 1986, 2, p 521-527

    Google Scholar 

  5. N. Saunders, Calculated Stable and Metastable Phase Equilibria in Al-Li-Zr Alloys, Z. Metallkd., 1989, 80(12), p 894-903

    Google Scholar 

  6. S.V. Meschel and O.J. Kleppa, Standard Enthalpies of Formation of 4d Aluminides by Direct Synthesis Calorimetry, J. Alloys Compd., 1993, 191, p 111-116

    Article  Google Scholar 

  7. R. Klein, I. Jacob, P.A.G. O’Hare, and R.N. Goldberg, Solution-Calorimetric Determination of the Standard Molar Enthalpies of Formation of the Pseudobinary Compounds Zr(AlxFe1−x)2 at the Temperature 298.15 K, J. Chem. Thermodyn., 1994, 26, p 599-608

    Article  Google Scholar 

  8. A. Peruzzi, Reinvestigation of the Zr-rich End of the Zr-Al Equilibrium Phase Diagram, J. Nucl. Mater., 1992, 186, p 89-99

    Article  ADS  Google Scholar 

  9. T. Wang, Z. Jin, and J.C. Zhao, Thermodynamic Assessment of the Al-Zr Binary System, J. Phase Equilib., 2001, 22, p 544-551

    Article  Google Scholar 

  10. G. Ghosh and M. Asta, First-Principles Calculation of Structural Energetics of Al-TM (TM = Ti, Zr, Hf) Intermetallics, Acta Mater., 2005, 53, p 3225-3252

    Article  Google Scholar 

  11. H. Zhang and S. Wang, The Structural Stabilities of the Intermetallics and the Solid-State Phase Transformations Induced by Lattice Vibration Effects in the Al-Zr System by First-Principles Calculations, J. Mater. Res., 2010, 25(9), p 1689-1694

    Article  ADS  Google Scholar 

  12. M. Mihalkovic, M. Widom and co-workers, Alloy Database, retrieved from http://www.alloy.phys.cmu.edu, online (2011)

  13. C. Colinet, J.-C. Crivello, and J.-C. Tedenac, Structural Stability of Ternary C22-Zr6X2Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and C22-Zr6Sn2T′ (T′=Fe Co, Ni, Cu) Compounds, J. Solid State Chem., 2013, 205, p 217

    Article  ADS  Google Scholar 

  14. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, Materials Design and Discovery with High-Throughput Density Functional Theory : The Open Quantum Materials Database (OQMD), JOM, 2013, 65, p 1501-1509

    Article  Google Scholar 

  15. Y.H. Duan, B. Huang, Y. Sun, M.J. Peng, and S.G. Zhou, Stability, Elastic Properties and Electronic Structures of the Stable Zr-Al Intermetallic Compounds: A First-Principles Investigation, J. Alloys Compd., 2014, 590, p 50-60

    Article  Google Scholar 

  16. H. Okamoto, The Al-Zr System, J. Phase Equilib., 1993, 14(2), p 259-260

    Article  Google Scholar 

  17. H. Okamoto, Al-Zr Aluminum-Zirconium, J. Phase Equilib., 2002, 23(5), p 455

    Article  Google Scholar 

  18. H. Okamoto and T.B. Massalski, Guidelines For Binary Phase Diagram Assessment, J. Phase Equilib., 1993, 14(3), p 316-335

    Article  Google Scholar 

  19. D.J. McPherson and M. Hansen, The System Zr-Al, Trans. ASM, 1954, 46, p 354-374

    Google Scholar 

  20. R.J. Kematick and H.F. Franzen, Thermodynamic Study of the Zirconium-Aluminum System, J. Solid State Chem., 1984, 54, p 226-234

    Article  ADS  Google Scholar 

  21. E.M. Schulson, D.H. McColl, and V.C. Ling, Report No. AECL-5176, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, July 1975

  22. S.N. Tiwari and K. Tangri, The Solid Solubility of Aluminum in α-Zirconium, J. Nucl. Mater., 1970, 34, p 92-96

    Article  ADS  Google Scholar 

  23. W.L. Fink and L.A. Willey, Equilibrium Relation in Al-Zr Alloys, Met. Technol., 1939, 1, p 69-80

    Google Scholar 

  24. V.M. Glazov, G. Lazarev, and N. Korolkov, The Solubility of Certain Transition Metals in Aluminium, Met. Term. Obrab. Met., 1959, 10, p 48-50

    Google Scholar 

  25. P. Chiotti and P.F. Woerner, Metal Hydride Reactions: I. Reaction of Hydrogen with Solutes in Liquid Metal Solvents, J. Less-Common Met., 1964, 7, p 111-119

    Article  Google Scholar 

  26. M.E. Drits, E.S. Kadaner, and V.K. Kuz’mina, Solubility of Silicon and Zirconium in Aluminium, Izv. Akad. Nauk., 1968, 1, p 102-105

    Google Scholar 

  27. G.M. Kuznetsov, A.D. Barsukov, and M.I. Abas, Solubility of Mn, Cr, Ti, and Zr in Al in the Solid State, Sov. Non Ferrous Met. Res., 1983, 11, p 47-51

    Google Scholar 

  28. A. Janghorban, A. Antoni-Zdziobek, M. Lomello-Tafin, C. Antion, Th Mazingue, and A. Pisch, Phase Equilibria in the Aluminium-Rich Side of the Al-Zr System, J. Therm. Anal. Calorim., 2013, 114(3), p 1015-1020

    Article  Google Scholar 

  29. O. Dezellus, B. Gardiola, and J. Andrieux, On the Solubility of Group IV Elements (Ti, Zr, Hf) in Liquid Aluminum below 800°C, J. Phase Equilib. Diffus., 2014, 35(2), p 120-126

    Article  Google Scholar 

  30. C. Colinet and A. Pasturel, Phase Stability and Electronic Structure in ZrAl3 Compound, J. Alloys Compd., 2001, 319, p 154-161

    Article  Google Scholar 

  31. C. Colinet, Ab-initio Calculation of Enthalpies of Formation of Intermetallic Compounds and Enthalpies of Mixing of Solid Solutions, Intermetallics, 2003, 11, p 1095-1102

    Article  Google Scholar 

  32. G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6, p 15-50

    Article  Google Scholar 

  33. G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169-11186

    Article  ADS  Google Scholar 

  34. D. Vanderbilt, Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev., 1990, 41, p 7892

    Article  ADS  Google Scholar 

  35. J.P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B, 1992, 45, p 13244

    Article  ADS  Google Scholar 

  36. J. Wang, S.-L. Shang, Y. Wang, Z.-G. Mei, Y.-F. Liang, Y. Du, and Z.-K. Liu, First-Principles Calculations of Binary Al Compounds: Enthalpies of Formation and Elastic Properties, CALPHAD, 2011, 35(4), p 562-573

    Article  Google Scholar 

  37. P.E. Blöch, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953-17979

    Article  ADS  Google Scholar 

  38. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1998, 59, p 1758-1775

    Article  ADS  Google Scholar 

  39. J.P. Perdew, S. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868

    Article  ADS  Google Scholar 

  40. X.L. Yuan, D.Q. Wei, X.R. Chen, Q.M. Zhang, and Z.Z. Gong, The First-Principles Calculations for the Elastic Properties of Zr2Al under Compression, J. Alloys Compd., 2011, 509, p 769-774

    Article  Google Scholar 

  41. Y. Zhan and M. Pang, Bonding Characteristics and Site Occupancies of Alloying Elements in Zr3Al2 Compound from First Principles, J. Alloys Compd., 2015, 622, p 960-965

    Article  Google Scholar 

  42. X. Tao, J. Zhu, H. Guo, Y. Ouyang, and Y. Du, Phase stability, Thermodynamic and Mechanical Properties of AlZr2, FeZr2 and Al2FeZr6 from First-Principles Calculations, J. Nucl. Mater., 2013, 440, p 6-10

    Article  ADS  Google Scholar 

  43. J.-P. Harvey, A.E. Gheribi, and P. Chartrand, Thermodynamic Integration Based on Classical Atomistic Simulations to Determine the Gibbs Energy of Condensed Phases: Calculation of the Aluminum-Zirconium System, Phys. Rev. B, 2012, 86, p 224202

    Article  ADS  Google Scholar 

  44. Y.O. Esin, N.N. Serebrennikov, E.D. Pletneva, and V.K. Kapustkin, Temperature Dependence of the Enthalpy and Heat Capacity of Zirconium Aluminides in the Solid and Liquid States, Izv. Vyssh. Ucheb. Zaved. Chern. Metall., 1987, 10, p 1-3, in Russian

    Google Scholar 

  45. Y.O. Esin, N.P. Bobrov, M.S. Petrushevskiii, and P.V. Gel’d, Enthalpy of Formation of Liquid Aluminum Alloys with Titanium and Zirconium, Izv. Akad. Nauk SSSR, Met., 1974, 5, p 104-109, in Russian, Russ. Metall., 1974, 5, p 86-89 (English translation)

  46. G.I. Batalin, V.S. Sudavtsova, and N.N. Maryanchik, Thermodynamic Properties of Liquid Al-Sc, Al-V, and Al-Ti Binary Alloys, Ukr. Khim. Zh., 1985, 51(8), p 817-819

    Google Scholar 

  47. V.S. Sudavtsova, G.I. Batalin, and V.S. Tutevich, Thermodynamic Properties of Molten Binary Alloys in Systems Al-Zr(Nb,Mo), Izv. Akad. Nauk SSSR, Met., 1985, 5, p 185-187, in Russian, Russ. Metall., 1985, 5, p 183-185 (English translation)

  48. V. S. Sudavtsova and N. V. Podoprigora, Thermodynamic Properties of Melts in Al-Ti(Zr,Hf) Binary Systems, Powder Metall. Met. Ceram., 2009, 48(1-2), p 83-87, Translated from Poroshk. Metall., 2009, 48(1-2), p 107-112

  49. V. Witusiewicz, U.K. Stolz, I. Arpshofen, and F. Sommer, Thermodynamics of Liquid Al-Cu-Zr Alloys, Z. Metallkd., 1998, 89, p 704-713

    Google Scholar 

  50. I. Ansara, A. Pasturel, and K.H.L. Buschow, Enthalpy effects in Amorphous Alloys and Intermetallic Compounds in the System Zr-Cu, Phys. Stat. Sol. A, 1982, 69, p 447-453

    Article  ADS  Google Scholar 

  51. P.A. Gomozov, Yu.V. Zasypalov and B. M. Mogutnov, Enthalpies of Formation of Intermetallic Compounds with the CsCI Structure (CoTi, CoZr, CoAl, NiTi), Russ. J. Phys. Chem., 1986, 60(8), p 1122-1124, Translated from Zh. Fiz. Khim., 1986, 60, p 1865-1867

  52. K. Nagarajan, R. Babu, and C.K. Mathews, Enthalpy of Formation of UZr2 by Calorimetry, J. Nucl. Mater., 1993, 203, p 221-223

    Article  ADS  Google Scholar 

  53. A.A. Turchanin and I.A. Tomilin, Experimental Investigations of the Enthalpies of Formation of Zr-Based Metallic Amorphous Binary and Ternary Alloys, Ber. Bunsenges. Phys. Chem., 1998, 102(9), p 1252-1258

    Article  Google Scholar 

  54. A.A. Zubkov, A.A. Turchanin, and I.A. Tomilin, A High-Temperature Solution Calorimeter for Measuring the Heat of Mixing, Indus. Lab., 1995, 61(9), p 544-547

    Google Scholar 

  55. A. Decreton, P. Benigni, J. Rogez, G. Mikaelian, M. Barrachin, M. Lomello-Tafin, C. Antion, A. Janghorban, and E. Fischer, Contribution to the Description of the Absorber Rod Behavior in Severe Accident Conditions: An Experimental Investigation of the Ag-Zr Phase Diagram, J. Nucl. Mater., 2015, to be published

  56. G.I. Batalin, E.A. Beloborodova, V.V. Nerubaschenko, V.D. Galochka, and L.I. Slyuzko, Thermodynamic Properties of Liquid Solutions in the Aluminum-Zirconium System, Izv. Vyssh. Ucheb. Zaved. Tsvetn. Metall., 1982, 3, p 74-77

    Google Scholar 

  57. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15(4), p 317-425

    Article  Google Scholar 

  58. O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348

    Article  Google Scholar 

  59. H.L. Lukas, ETh Henig, and B. Zimmermann, Optimisation of Phase Diagrams by a Least Squares Method Using Simultaneously Different Types of Data, CALPHAD, 1977, 1(3), p 225-236

    Article  Google Scholar 

  60. M. Potzschke and K. Schubert, Zum Aufbau einiger zu T4-B3 Homologer und Quasihomologer Systeme (To Build some Homology with T4-B3 and Quasi-Homologous Systems), Z. Metallkd., 1962, 53(8), p 548-561

    Google Scholar 

Download references

Acknowledgments

This work has been performed in the framework of the development of the NUCLEA thermodynamic database for nuclear materials; it was supported by Universite Grenoble Alpes, CMTC, SIMAP, and IRSN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TDB 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, E., Colinet, C. An Updated Thermodynamic Modeling of the Al-Zr System. J. Phase Equilib. Diffus. 36, 404–413 (2015). https://doi.org/10.1007/s11669-015-0398-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0398-y

Keywords

Navigation