Skip to main content
Log in

Experimental and Theoretical Contribution to the Phase Equilibria in the Ternary CaO-Al2O3-B2O3 System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase equilibria in the lime rich part of the CaO-Al2O3-B2O3 ternary system were investigated by thermodynamic modeling and key experiments. Three ternary compounds, CaAl2B2O7 (CAB), Ca2Al2B2O8 (C2AB) and Ca2Al2B6O14 (C2AB3), are reported in the literature and their thermodynamic properties were calculated using Density Functional Theory and lattice dynamics theory. Partial isothermal sections of the lime rich part of the CaO-Al2O3-B2O3 ternary system were investigated at 950 and 1020 °C using solid state reactions and x-ray diffraction on 14 selected samples. The observed results confirm the available experimental data from the literature. Based on thermal analysis using differential scanning calorimetry, the Ca3Al2O6-CaB2O4 and CaAl2O4-CaB2O4 T-x sections as well as a tentative partial liquid surface of the lime rich part were constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.M. Gartner, Industrially Interesting Approaches to “low-CO2” Cements, Cem. Concr. Res., 2004, 34, p 1489-1498

    Article  Google Scholar 

  2. E.M. Gartner, G. Li, High belite-containing sulfoaluminous clinker, method for the productions and the use thereof for preparing hydraulic binders, Patent WO 2006018569 A3 (2006)

  3. M. Ben Haha, F. Winnefeld, and A. Pisch, Advances in Understanding ye’elimite-rich Cements, Cem. Concr. Res., 2019, 123, p 105778

    Article  Google Scholar 

  4. H.F.W. Taylor, Cement Chemistry, 2nd ed., Thomas Telford Publishing, London, 1997

    Book  Google Scholar 

  5. J.G. Fletcher and F.P. Glasser, Phase Relations in the System CaO-B2O3-SiO2, J. Mater. Sci., 1993, 28, p 2677-2686

    Article  ADS  Google Scholar 

  6. P.L. Higby, R.J. Ginther, I.D. Aggarwal, and E.J. Friebele, Glass-Formation and Thermal Properties of Low-Silica Calcium Aluminosilicate Glasses, J. Non-Cryst. Solids, 1990, 126(3), p 209-215

    Article  ADS  Google Scholar 

  7. F.T. Wallenberger, R.J. Hicks, and A.T. Bierhals, Design of Environmentally Friendly Fiberglass Compositions: Ternary Eutectic SiO2-Al2O3-CaO Compositions, Structures and Properties, J. Non-Cryst. Solids, 2004, 349, p 377-387

    Article  ADS  Google Scholar 

  8. J.F. MacDowell, Aluminoborate Glass-Ceramics with Low Thermal Expansivity, J. Am. Ceram. Soc., 1990, 73(8), p 2287-2292

    Article  Google Scholar 

  9. C. Hirayama, Properties of Aluminoborate Glasses of Group II, Metal Oxides: I, Glass Formation and Thermal Expansion, J. Am. Ceram. Soc., 1961, 44, p 602-606

    Article  Google Scholar 

  10. R. El-Hayek, F. Ferey, P. Florian, A. Pisch, and D.R. Neuville, Structure and Properties of Lime Alumino-Borate Glasses, Chem. Geol., 2017, 461, p 75-81

    Article  ADS  Google Scholar 

  11. U.-L. Schäfer and H.-J. Kuzel, Kompatibilitätsbeziehungen und ternäre Verbindungen im System CaO-Al2O3-B2O3, Neues Jahrb. Mineral. Monatsh., 1967, 1967, p 131-136 (in German)

    Google Scholar 

  12. W. Schuckmann, Zur Struktur des Calcium-Aluminium-Borates, CaAl[O7BO3], Neues Jahrb, Miner. Monatsh., 1968, 1968, p 80-86 (in German)

    Google Scholar 

  13. K.S. Chang and D.A. Keszler, CaAl2(BO3)2O: Crystal Structure, Mater. Res. Bull., 1998, 33, p 299-304

    Article  Google Scholar 

  14. E. Iwase and N. Saito, Johachidolite: A New Mineral, a Hydrous Fluoborate of Sodium, Calcium and Aluminum, Sci. Pap. Inst. Phys. Chem. Res. (Tokyo), 1942, 39, p 300-304, in Japanese

    Google Scholar 

  15. P.B. Moore and T. Araki, Johachidolite, CaAl[B3O7], A Borate with Very Dense Atomic Structure, Nat. Phys. Sci., 1972, 240, p 63-65

    Article  ADS  Google Scholar 

  16. M. Kadiyski, T. Armbruster, D. Günther, E. Reusser, and A. Peretti, Johachidolite, CaAl[B3O7], A Mineralogical and Structural Peculiarity, Eur. J. Miner., 2008, 20, p 965-973

    Article  Google Scholar 

  17. N.I. Leonyuk, Structural Aspects in Crystal Growth of Anhydrous Borates, J. Cryst. Growth, 1997, 174, p 301-307

    Article  ADS  Google Scholar 

  18. R.R. Harding, J.G. Francis, C.J.E. Oldershaw, and A.H. Rankin, Johachidolite—A New Gem, J. Gemm., 1999, 26(5), p 324-329

    Article  Google Scholar 

  19. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende, FactSage Thermochemical Software and Databases 2010–2016, Calphad, 2016, 54, p 35-53

    Article  Google Scholar 

  20. E.T. Carlson, The System: CaO-B2O3, J. Res. Nat. Bur. Stand., 1932, 9, p 825

    Article  Google Scholar 

  21. S.A. Decterov, V. Swamy, and I.-H. Jung, Thermodynamic Modeling of the B2O3-SiO2 and B2O3-Al2O3 System, Int. J. Mater. Res., 2007, 98, p 988-994

    Article  Google Scholar 

  22. D. Mazza, M. Vallino, and G. Busca, Mullite-Type Structures in the Systems Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3, J. Am. Ceram. Soc., 1992, 75(7), p 1929-1934

    Article  Google Scholar 

  23. R.W. Nurse, J.H. Welch, and A.J. Majumdar, The CaO–Al2O3 System in a Moisture-Free Atmosphere, Trans. Br. Ceram. Soc., 1965, 64, p 409-418

    Google Scholar 

  24. D.A. Jerebtsov and G.G. Mikhailov, Phase Diagram of CaO–Al2O3 System, Ceram. Int., 2001, 27, p 25-28

    Article  Google Scholar 

  25. R.W. Nurse, J.H. Welch, and A.J. Majumdar, The 12CaO·7Al2O3 Phase in the CaO–Al2O3 System, Trans. Br. Ceram. Soc., 1965, 64, p 323-332

    Google Scholar 

  26. A.K. Chatterjee and G.I. Zhmoidin, The Phase Equilibrium Diagram of the System CaO-Al2O3-CaF2, J. Mater. Sci., 1972, 7, p 93-97

    Article  ADS  Google Scholar 

  27. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, p B864-B871

    Article  ADS  MathSciNet  Google Scholar 

  28. W. Kohn and L.J. Sham, Self-consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p A1133-A1138

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169-11186

    Article  ADS  Google Scholar 

  30. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59, p 1758-1775

    Article  ADS  Google Scholar 

  31. J. Sun, A. Ruzsinszky, and J.P. Perdew, Strongly Constrained and Appropriately Normed Semilocal Density Functional, Phys. Rev. Lett., 2015, 115, p 036402

    Article  ADS  Google Scholar 

  32. D.A. Kitchaev, H. Peng, Y. Liu, J. Sun, J.P. Perdew, and G. Ceder, Energetics of MnO2 Polymorphs in Density Functional Theory, Phys. Rev., 2016, B93, p 045132

    Article  ADS  Google Scholar 

  33. H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev., 1976, B13, p 5188-5192

    Article  ADS  MathSciNet  Google Scholar 

  34. P.E. Blöchl, O. Jepsen, and O.K. Andersen, Improved Tetrahedron Method for Brillouin-Zone Integrations, Phys. Rev., 1994, B49, p 16223-16233

    Article  ADS  Google Scholar 

  35. A. Togo and I. Tanaka, First Principles Phonon Calculations in Materials Science, Scripta Mater., 2015, 108, p 1-5

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge fruitful discussions within the French research consortium on high temperature thermodynamics GDR 3584 “TherMatHT” (www.thermatht.fr). CIMENT/GRICAD in the frame of the “atosimul” project is acknowledged for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Pisch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Günter Effenberg. The special issue was organized by Andrew Watson, Coventry University, Coventry, United Kingdom; Svitlana Iljenko, MSI, Materials Science International Services GmbH, Stuttgart, Germany; and Rainer Schmid-Fetzer, Clausthal University of Technology, Clausthal-Zellerfield, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferey, F., Briaud, V., Violet, P. et al. Experimental and Theoretical Contribution to the Phase Equilibria in the Ternary CaO-Al2O3-B2O3 System. J. Phase Equilib. Diffus. 41, 443–456 (2020). https://doi.org/10.1007/s11669-020-00803-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00803-7

Keywords

Navigation