Skip to main content

Advertisement

Log in

Determination of convective heat transfer coefficient and specific energy consumption of potato using an ingenious self tracking solar dryer

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In the present work, an attempt has been made to experimentally determine the heat transfer properties of potato in terms of convective heat transfer coefficient, specific energy consumption and specific heating rate. Drying experiments with potato cylinders have been performed in an in-house fabricated laboratory scale natural convection indirect solar dryer with self tracking mechanism. The convective heat transfer coefficient of cylindrical potato samples was evaluated by considering the combined effects of heat capacities of food product as well as radiative heat transfer from drying chamber to the food product. This study revealed that the convective heat transfer coefficient for potato cylinders was varying from 11.73 to 16.23 W/m2 °C with an experimental error of 7.86 %. The specific energy consumption was decreasing exponentially with drying time, and the average value was estimated to be 3,491 kJ/kg. It was also observed that the specific heating rate for potato cylinders decrease with dimensionless moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

C, n :

Constants in Nusselt Eq. (15)

C p :

Specific heat capacity of the product (J/kg K)

h :

Length of the cylinder (m)

h c :

Convective heat transfer coefficient (W/m2 K)

k :

Thermal conductivity of the product (W/m K)

k a :

Thermal conductivity of air (W/m K)

L :

Characteristic length (m)

M :

Moisture content, dry basis (kg water/kg dry matter)

m d :

Mass of dry matter (kg)

R:

Radius of cylinder (m)

E p :

Specific energy consumption (kJ/kg dry matter)

T :

Temperature of drying air (K)

T p :

Temperature of product (K)

t :

Time (s)

T ch :

Temperature of drying chamber (K)

T f :

Mean fluid temperature (K)

V :

Volume of the sample (m3)

λ :

Latent heat of vaporization (kJ/kg)

ρ :

Density of potato (kg/m3)

β:

Coefficient of volumetric expansion (1/K)

ν:

Kinematic viscosity of air (m2/s)

σ:

Stefan-Boltzmann constant (5.67 × 10−8 W/m2 K4)

ε:

Emissivity of the product

o:

At the beginning of drying

f:

Final value of moisture content

Gr:

Grashof number = \( \frac{{g\beta \varDelta TL^{3} }}{{\nu^{2} }} \)

Nu:

Nusselt number = \( \frac{{h_{c} L}}{{k_{a} }} \)

Pr:

Prandtl number = \( \frac{{C_{p} \upsilon \rho }}{k} \)

Ra:

Rayleigh number = \( Gr \cdot \,\Pr \)

References

  1. MoFPI: Ministry of Food Processing Industries, Government of India, New Delhi (2011), www.mofpi.nic.in

  2. A.S. Mujumdar, C.L. Law, Drying technology: trends and applications in post harvest processing. Food Bioprocess Technol. 3, 843–852 (2010)

    Article  Google Scholar 

  3. O.V. Ekechukwu, B. Norton, Review of solar energy drying systems II: an overview of solar drying technology. Energy Convers. Manage. 40, 615–655 (1999)

    Article  CAS  Google Scholar 

  4. M.A. Leon, S. Kumar, S.C. Bhattacharya, A comprehensive procedure for performance evaluation of solar food dryers. Renew. Sustain. Energy Rev. 6, 367–393 (2002)

    Article  Google Scholar 

  5. B. Brenndorfer, L. Kennedy, C.O.O. Bateman, G.C. Mrema, C. Wereko-Brobby, Solar dryers-Their role in post harvest processing (Commonwealth Science Council, Commonwealth Secretariat Publications, London, 1985)

    Google Scholar 

  6. B. Norton, S.D. Fleming, O.V. Ekechukwu, in Solar thermal applications, eds by H.P. Garg et al. Physics and Technology of Solar Energy, vol. 1 (D. Reidel Publishing Company, Academic publishers, Dordrecht, 1987).

  7. A. Sreekumar, P.E. Manikantan, K.P. Vijayakumar, Performance of indirect solar cabinet dryer. Energy Convers. Manage. 49(6), 1388–1395 (2008)

    Article  CAS  Google Scholar 

  8. S. Boughali, H. Benmoussa, B. Bouchekima, D. Mennouche, H. Bouguettaia, D. Bechki, Crop drying by indirect active hybrid solar: electrical dryer in the eastern Algerian Septentrional Sahara. Sol. Energy 83, 2223–2232 (2009)

    Article  Google Scholar 

  9. A.A. El-Sebaii, S. Aboul-Enein, M.R.I. Ramadan, H.G. El-Gohary, Experimental investigation of an indirect type natural convection solar dryer. Energy Convers. Manage. 43, 2251–2266 (2002)

    Article  CAS  Google Scholar 

  10. M.K. Krokida, N.P. Zogzas, Z.B. Maroulis, Heat transfer coefficient in food processing: compilation of literature data. Int. J. Food Prop. 5(2), 435–450 (2002)

    Article  Google Scholar 

  11. R.P. Singh, D.R. Heldman, Introduction to food engineering (Academic Press Inc, New York, 1984)

    Google Scholar 

  12. D. Jain, D. Mridula, R.T. Patil, P. Barnwal, R. Kumar, Kinetics of convective heat and mass transfer coefficient of green chilli during open-sun and greenhouse drying. Desalination Water Treat. 24, 38–46 (2010)

    Article  Google Scholar 

  13. J.A. Prasad, Convective heat transfer in herb and spices during open sun drying. Int. J. Food Sci. Technol. 44, 657–665 (2009)

    Article  CAS  Google Scholar 

  14. S.I. Anwar, G.N. Tiwari, Evaluation of convective heat transfer coefficient in crop drying under open sun drying conditions. Energy Convers. Manage. 42(5), 627–637 (2001)

    Article  Google Scholar 

  15. I.T. Togrul, Convective heat transfer coefficient for apricots under open sun drying conditions. Chem. Eng. Commun. 192(8), 1036–1045 (2005)

    Article  CAS  Google Scholar 

  16. D. Jain, G.N. Tiwari, Effect of greenhouse on crop drying under natural and forced convection I. Evaluation of convective heat transfer coefficient. Energy Convers. Manage. 45, 765–783 (2004)

    Article  Google Scholar 

  17. M. Kumar, P. Khatak, R.K. Sahdev, O. Prakash, The effect of open sun and indoor forced convection on heat transfer coefficients for the drying of papad. J. Energy South. Afr. 22(2), 40–46 (2011)

    Google Scholar 

  18. N. Rahman, S. Kumar, Evaluation of convective heat transfer coefficient during drying of shrinking bodies. Energy Convers. Manage. 47, 2591–2601 (2006)

    Article  Google Scholar 

  19. I. Białobrzewski, Determination of the heat transfer coefficient by inverse problem formulation during celery root drying. J. Food Eng. 74, 383–391 (2006)

    Article  Google Scholar 

  20. O. Vitrac, G. Trystram, A method for time and spatially resolved measurement of convective heat transfer coefficient (h) in complex flows. Chem. Eng. Sci. 60(5), 1219–1236 (2005)

    Article  CAS  Google Scholar 

  21. B.A. Anderson, R.P. Singh, Effective heat transfer coefficient measurement during air impingement thawing using an inverse method. Int. J. Refrig. 29, 281–293 (2006)

    Article  CAS  Google Scholar 

  22. M.N. Ahmad, B.P. Kelly, T.R.A. Magee, Measurement of heat transfer coefficients using stationary and moving particles in tube flow. Food Bioprod. Process. 77(3), 213–222 (1999)

    Article  Google Scholar 

  23. J.A. Guzman, A. Lauterbach, R. Jordan, Method for determining overall performances of solar kilns. J. Sol. Energy Eng. 109, 26–29 (1987)

    Article  CAS  Google Scholar 

  24. R.K. Goyal, G.N. Tiwari, Heat and mass transfer relations for crop drying. Drying Technol. 16(8), 1741–1754 (1998)

    Article  CAS  Google Scholar 

  25. N. Mehrdadi, S.G. Joshi, T. Nasrabdi, H. Hoveidi, Application of solar energy for drying of sludge from pharmaceutical industrial waste water and probable reuse. Int. J. Environ. Res. 1(1), 42–48 (2007)

    CAS  Google Scholar 

  26. AOAC, Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists, Arlington, VA, 2002)

  27. A.V. Luikov, Analytical heat diffusion theory (Academic Press, New York, 1968)

    Google Scholar 

  28. S. Youcef-Ali, N. Moummi, J.Y. Desmons, A. Abene, H. Messaoudi, M. Le Ray, Numerical and experimental study of dryer in forced convection. Int. J. Energy Res. 25(6), 537–553 (2001)

    Article  CAS  Google Scholar 

  29. N. Wang, J.G. Brennan, The influence of moisture content and temperature on the specific heat of potato measured by differential scanning calorimetry. J. Food Eng. 19(3), 303–310 (1993)

    Article  Google Scholar 

  30. N. Wang, J.G. Brennan, Changes in structure, density and porosity of potato during dehydration. J. Food Eng. 24(1), 61–76 (1995)

    Article  CAS  Google Scholar 

  31. E.K. Akpinar, Y. Bicer, A. Midilli, Modeling and experimental study on drying of apple slices in a convective cyclone dryer. J. Food Process Eng 26(6), 515–541 (2003)

    Article  Google Scholar 

  32. International Organization for Standardization (ISO), Guide to the expression of uncertainty in measurement. Report of International Organization for Standardization, vol. 3. (ISO/AG4/WG, Geneva, 1992)

  33. G. Mwithiga, S.N. Kigo, Performance of a solar dryer with limited sun tracking capability. J. Food Eng. 74, 247–252 (2006)

    Article  Google Scholar 

  34. C.L. Hii, S.V. Jangam, S.P. Ong, A.S. Mujumdar, Solar drying: fundamentals, applications and innovations (Adi Istrate publishers, TPR Group, 2012)

  35. J.P. Holman, Heat transfer (Tata McGraw-Hill, New Delhi, 2003)

    Google Scholar 

  36. S.K. Samdarshi, S.C. Mullick, Analytical equation for the top heat loss factor of a flat-plate collector with double glazing. J. Sol. Energy Eng. 113(2), 117–122 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. R. Chidambaram, Principal Scientific Adviser, Government of India for providing financial support through RuTAG scheme for carrying out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Tripathy.

Apendix 1: Uncertainty estimation in experimental heat transfer coefficient

Apendix 1: Uncertainty estimation in experimental heat transfer coefficient

The relation for convective heat transfer coefficient, hc in Eq. (6) can be expressed as:

$$ h_{c} = \frac{{(m_{1} - m_{2} )}}{{(t_{1} - t_{2} )}} \cdot \frac{\lambda }{{A(T - T_{p2} )}} + \frac{V}{A} \cdot \frac{{\rho C_{p} ({{m_{2} } \mathord{\left/ {\vphantom {{m_{2} } {m_{d} }}} \right. \kern-0pt} {m_{d} }})}}{{(T - T_{p2} )}} \cdot \frac{{(T_{p1} - T_{p2} )}}{{(t_{1} - t_{2} )}} - \frac{{\varepsilon \sigma \,\left( {T_{ch}^{4} - T_{p2}^{4} } \right)}}{{\left( {T - T_{p2} } \right)}} $$
(16)

The overall uncertainty in hc can be obtained by partial differentiation of each variable affecting hc in the Eq. (16):

$$ \frac{{\partial h_{c} }}{{\partial m_{1} }}E(m_{1} ) = \frac{1}{{t_{1} - t_{2} }} \cdot \frac{\lambda }{{A(T - T_{p2} )}} \cdot E(m_{1} ) $$
(17)
$$ \frac{{\partial h_{c} }}{{\partial m_{2} }}E(m_{2} ) = - \frac{1}{{(t_{1} - t_{2} )}} \cdot \frac{\lambda }{{A(T - T_{p2} )}} \cdot E(m_{2} ) + \frac{V}{A} \cdot \frac{{\rho C_{p} ({1 \mathord{\left/ {\vphantom {1 {m_{d} }}} \right. \kern-0pt} {m_{d} }})}}{{(T - T_{p2} )}} \cdot \frac{{(T_{p1} - T_{p2} )}}{{(t_{1} - t_{2} )}}E(m_{2} ) $$
(18)
$$ \frac{{\partial h_{c} }}{{\partial t_{1} }}E(t_{1} ) = - \frac{{(m_{1} - m_{2} )}}{{(t_{1} - t_{2} )^{2} }} \cdot \frac{\lambda }{{A(T - T_{p2} )}} \cdot E(t_{1} ) - \frac{V}{A} \cdot \frac{{\rho C_{p} ({{m_{2} } \mathord{\left/ {\vphantom {{m_{2} } {m_{d} }}} \right. \kern-0pt} {m_{d} }})}}{{(T - T_{p2} )}} \cdot \frac{{(T_{p1} - T_{p2} )}}{{(t_{1} - t_{2} )^{2} }}E(t_{1} ) $$
(19)
$$ \frac{{\partial h_{c} }}{{\partial t_{2} }}E(t_{2} ) = \frac{{(m_{1} - m_{2} )}}{{(t_{1} - t_{2} )^{2} }} \cdot \frac{\lambda }{{A(T - T_{p2} )}} \cdot E(t_{2} ) + \frac{V}{A} \cdot \frac{{\rho C_{p} ({{m_{2} } \mathord{\left/ {\vphantom {{m_{2} } {m_{d} }}} \right. \kern-0pt} {m_{d} }})}}{{(T - T_{p2} )}} \cdot \frac{{(T_{p1} - T_{p2} )}}{{(t_{1} - t_{2} )^{2} }}E(t_{2} ) $$
(20)
$$ \frac{{\partial h_{c} }}{{\partial T_{p2} }}E(T_{p2} ) = \frac{{(m_{1} - m_{2} )}}{{(t_{1} - t_{2} )}} \cdot \frac{\lambda }{{A(T - T_{p2} )^{2} }} \cdot E(T_{p2} ) + \frac{V}{A} \cdot \frac{{\rho C_{p} ({{m_{2} } \mathord{\left/ {\vphantom {{m_{2} } {m_{d} }}} \right. \kern-0pt} {m_{d} }})}}{{(T - T_{p2} )^{2} }} \cdot \frac{{(T_{p1} - T)}}{{(t_{1} - t_{2} )}} \cdot E(T_{p2} ) + \frac{{4\varepsilon \sigma T_{p2}^{3} }}{{\left( {T - T_{p2} } \right)}} \cdot E\left( {T_{p2} } \right) $$
(21)
$$ \frac{{\partial h_{c} }}{{\partial T_{p1} }}E(T_{p1} ) = \frac{V}{A} \cdot \frac{{\rho C_{p} ({{m_{2} } \mathord{\left/ {\vphantom {{m_{2} } {m_{d} }}} \right. \kern-0pt} {m_{d} }})}}{{(T - T_{p2} )}} \cdot \frac{1}{{(t_{1} - t_{2} )}} \cdot E(T_{p1} ) $$
(22)
$$ \frac{{\partial h_{c} }}{\partial R}E(R) = - \frac{{(m_{1} - m_{2} )}}{{(t_{1} - t_{2} )}} \cdot \frac{\lambda }{{2\pi R^{2} h(T - T_{p2} )}} \cdot E(R) - \frac{{\rho C_{p} ({{m_{2} } \mathord{\left/ {\vphantom {{m_{2} } {m_{d} }}} \right. \kern-0pt} {m_{d} }})}}{{2(T - T_{p2} )}} \cdot \frac{{(T_{p1} - T_{p2} )}}{{(t_{1} - t_{2} )}} \cdot E(R) $$
(23)
$$ \frac{{\partial h_{c} }}{\partial h}E(h) = - \frac{{(m_{1} - m_{2} )}}{{(t_{1} - t_{2} )}} \cdot \frac{\lambda }{{2\pi Rh^{2} (T - T_{p2} )}} \cdot E(h) $$
(24)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathy, P.P., Abhishek, S. & Bhadoria, P.B.S. Determination of convective heat transfer coefficient and specific energy consumption of potato using an ingenious self tracking solar dryer. Food Measure 8, 36–45 (2014). https://doi.org/10.1007/s11694-013-9163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-013-9163-2

Keywords

Navigation