Skip to main content
Log in

Extraction kinetics, modelling and optimization of phenolic antioxidants from sweet potato peel vis-a-vis RSM, ANN-GA and application in functional noodles

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The kinetic, modeling and optimised processing parameters for the extraction of phenolic antioxidant from an orange flesh sweet potato cultivar using an aqueous medium was studied. For the process to be effective; reaction time (t), temperature (T) and solid-to-solvent ratio (E) were optimised using the response surface methodology (RSM) and the artificial neural network (ANN) algorithms. Linear interaction between solid to solvent ratio was established to be most significant. Processing variables were established to make 30.44% (T), 38.75% (E) and 30.81% (t) roles to the efficiency of the system. Optimal parameters of 90 °C (T), 6.79% (E) and 60.5 min (t) were established as optimum processing variables using the RSM while ANN algorithm predicts optimal extraction conditions points of 98.64 °C (T), 11.68% (E) and 60.5 min (t). ANN algorithm was the best tool for optimum points prediction due to its low values of mean relative per cent deviation modulus and its absolute average deviation. Antioxidant properties of noodles improved with fortification with 1% peel extract. Optimization conditions and predictive models described in this studies offers an opportunity for the formulation of food products with functional properties by food processor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Al-Weshahy, R.A. Venket, Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int. 42, 1062–1066 (2009)

    CAS  Google Scholar 

  2. O. Kadiri, T.A. Akanbi, B.T. Olawoye, S.O. Gbadamosi, Characterization and antioxidant evaluation of phenolic compounds extracted from the protein concentrate and protein isolate produced from pawpaw (Carica papaya Linn.) seeds. Int. J. Food Prop. 20(11), 2423–2436 (2017)

    CAS  Google Scholar 

  3. H. Wijngaard, C. Rößle, N. Brunton, A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem. 116, 202–207 (2009)

    CAS  Google Scholar 

  4. K.P. Maloney, V.D. Truong, J.C. Allen, Chemical optimization of protein extraction from sweet potato (Ipomoea batatas) peel. J. Food Sci. 77, E307–E312 (2012)

    CAS  PubMed  Google Scholar 

  5. I.R. Amado, F. Daniel, S. Marivel, A.V. Carlos, Optimization of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 165, 290–299 (2014)

    CAS  PubMed  Google Scholar 

  6. H. Koduvayur, S.N. Nielsen, C. Jacobsen, Antioxidant activity of potato peel extracts in a fish-rapeseed oil mixture and in oil-in-water emulsions. Journal of America Oil Chemist Society 87, 1319–1332 (2010)

    Google Scholar 

  7. S. Kanatt, R. Chander, P. Radhakrishna, A. Sharma, Potato peel extract: a natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. J. Agric. Food Chemistry 53, 1499–1504 (2005)

    CAS  Google Scholar 

  8. S.F.K. Habeebullah, H.D. Grejsen, C. Jacobsen, Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): effect on lipid and protein oxidation. Food Chem. 131, 843–851 (2012)

    Google Scholar 

  9. A. Singh, K. Sabally, S. Kubow, D.J. Donnelly, Y. Gariepy, V. Orsat, Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecule 16, 2218–2232 (2011)

    CAS  Google Scholar 

  10. T. Wu, J. Yan, R. Liu, M.F. Marcone, H.A. Aisa, r Tsao, Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem. 133, 1292–1298 (2012)

    CAS  Google Scholar 

  11. P.P. Singh, M.D.A. Saldaña, Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 44, 2452–2458 (2011)

    CAS  Google Scholar 

  12. W. Peschel, F. Sánchez-Rabaneda, W. Diekmann, A. Plescher, I. GartzÍa, D. Jimenez, R. Lamuela-Raventós, S. Buxaderas, C. Codina, An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 97, 137–150 (2006)

    CAS  Google Scholar 

  13. K.N. Prasad, F.A. Hassan, B. Yang, K.W. Kong, R.N. Ramanan, A. Azlan, A. Ismail, Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm peels. Food Chem. 128, 1121–1127 (2011)

    CAS  Google Scholar 

  14. H.A. Emeko, O.O. Olugbogi, E. Betiku, Appraisal of artificial neural network and response surface methodology in modeling and process variable optimization of oxalic acid production from cashew apple juice: a case of surface fermentation. BioResources 10(2), 2067–2082 (2015)

    Google Scholar 

  15. D. Bas, I.H. Boyaci, Modelling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng. 78(3), 846–854 (2007)

    CAS  Google Scholar 

  16. E. Betiku, A.E. Taiwo, Modelling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-a-vis response surface methodology and artificial neural network. Renew. Energy 74, 87–94 (2015)

    CAS  Google Scholar 

  17. A. Anastácio, S. Rúben, I.S. Carvalho, Phenolics extraction from sweet potato peels: modelling and optimization by response surface modelling and artificial neural network. J. Food Sci. Technol. 53(12), 4117–4125 (2016)

    PubMed  PubMed Central  Google Scholar 

  18. R.G. Menon, A.N. Padmaja, V. Jyothi, M.S. Sajeev, Gluten-free starch noodles from sweet potato with reduced starch digestibility and enhanced protein content. J. Food Sci. Technol. 53(9), 3532–3542 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. B. Olawoye, B.O. Kadiri, Optimization and response surface modelling of antioxidant activities of Amaranthus virides seed flour extract. Ann. Food Sci. Technol. 17(1), 114–123 (2015)

    Google Scholar 

  20. K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19, 669–675 (2006)

    CAS  Google Scholar 

  21. M. Skerget, P. Kotnik, M. Hadolin, A.R. Hras, M. Simonic, Z. Knez, Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 89, 191–198 (2005)

    CAS  Google Scholar 

  22. J. Zhishen, T. Mengcheng, T.W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559 (1996)

    Google Scholar 

  23. P. Prieto, M. Pineda, M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341 (1999)

    CAS  PubMed  Google Scholar 

  24. C.H. Chan, R. Yusoff, G.C. Ngoh, Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem. Eng. Res. Des. 92(6), 1169–1186 (2014)

    CAS  Google Scholar 

  25. S.O. Gbadamosi, S.H. Abiose, R.E. Aluko, Amino acid profile, protein digestibility, thermal and functional properties of conophor nut (Tetracarpidium conophorum) defatted flour, protein concentrate and isolates. Int. J. Food Sci. Technol. 47, 731–739 (2012)

    CAS  Google Scholar 

  26. C.T. Akanbi, O. Kadiri, O.S. Gbadamosi, Kinetics of starch digestion in native and modified sweetpotato starches from an orange fleshed cultivar. Int. J. Biol. Macromol. 134, 946–953 (2019)

    CAS  PubMed  Google Scholar 

  27. H. Fredriksson, J. Silverio, R. Andersson, A.C. Eliasson, P. Aman, The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr. Polym. 35(3–4), 119–134 (1998)

    CAS  Google Scholar 

  28. A.A.A. Mohdaly, M.F.R. Hassanien, A. Mahmoud, M.A. Sarhan, I. Smetanska, Phenolic extracted from potato, sugar beet, and sesame processing by products. Int. J. Food Prop. 16, 1148–1168 (2013)

    CAS  Google Scholar 

  29. M. Peleg, An empirical model for the description of moisture sorption curves. J. Food Sci. 53, 1216–1217 (1988)

    Google Scholar 

  30. T.I. Lafka, A.E. Lazou, V.J. Sinanoglou, E.S. Lazos, Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods 21, 8–31 (2003)

    Google Scholar 

  31. C.D. Fernando, P. Soysa, Extraction kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L.) brewing. J. Nutr. 14(74), 1–7 (2015)

    CAS  Google Scholar 

  32. G. Chen, J. Chen, C. Srinivasakannan, J. Peng, Application of response surface methodology for optimization of the synthesis of synthetic rutile from titania slag. Appl. Surf. Sci. (2011). https://doi.org/10.1016/j.apsusc.2011.11.039

    Article  Google Scholar 

  33. S.H. Pishgar-Komleh, A. Keyhani, M.R. Mostoft-Sarkari, A. Jafari, Application of response surface methodology for optimization of picker-husker harvesting losses in corn seed. Iran. J. Energy Environ. 3(2), 134–142 (2012)

    Google Scholar 

  34. L.H. Wang, B. Yang, X.Q. Du, C. Yi, Optimization of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chem. 108, 737–741 (2008)

    CAS  PubMed  Google Scholar 

  35. S.W. Chan, C.Y. Lee, C.F. Yap, W.M. Wan-Aida, C.W. Ho, Optimization of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. Int. Food Res. J. 16, 203–213 (2009)

    Google Scholar 

  36. T. Rajmohan, K. Palanikumar, Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measure 46, 1470–1481 (2013)

    Google Scholar 

  37. I. Noshadi, N.A.S. Amin, R.S. Parnas, Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalysed by solid heteropolyacid: optimization using response surface methodology (RSM). Fuel 94, 156–164 (2012)

    CAS  Google Scholar 

  38. A. Alibakshi, Strategies to develop robust neural network models: prediction of flash point as a case-study. Anal. Chim. Acta 1026, 69–76 (2018)

    CAS  PubMed  Google Scholar 

  39. S. Jacob, R. Banerjee, Modelling and optimization of anaerobic co-digestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm. Bioresour. Technol. 214, 386–395 (2016)

    CAS  PubMed  Google Scholar 

  40. V. Marinelli, L. Padalino, D. Nardiello, M.A. Del Nobile, A. Conte, New approach to enrich pasta with polyphenols from Grape Marc. J. Chem. (2015). https://doi.org/10.1155/2015/734578

    Article  Google Scholar 

  41. M. Boroski, A.C. de Aguiar, J.S. Boeing, E.M. Rotta, C.L. Wibby, E.G. Bonafé, J.V. Visentainer, Enhancement of pasta antioxidant activity with oregano and carrot leaf. Food Chem. 125(2), 696–700 (2011)

    CAS  Google Scholar 

  42. I. Khan, A. Yousif, S.K. Johnson, S. Gamlath, Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res. Int. 54(1), 578–586 (2013)

    CAS  Google Scholar 

  43. K. Biney, T. Beta, Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. LWT-Food Sci. Technol. 57(2), 569–579 (2014)

    CAS  Google Scholar 

  44. F. Shahidi, M. Naczk, Food phenolics: sources, chemistry, effects, applications (Technical Publication, Lancaster, 1995), pp. 231–245

    Google Scholar 

  45. M. Swieca, L. Sęczyk, U. Gawlik-Dziki, D. Dziki, Bread enriched with quinoa leaves: the influence of protein–phenolics interactions on the nutritional and antioxidant quality. Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2014.04.044

    Article  PubMed  Google Scholar 

  46. U. Gawlik-Dziki, Changes in the antioxidant activities of vegetables as a consequence of interactions between active compounds. J. Funct. Foods 4, 872–882 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation to the Department of Food Science and Technology for proving facilities and equipment’s used in the conduct of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oseni Kadiri.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadiri, O., Gbadamosi, S.O. & Akanbi, C.T. Extraction kinetics, modelling and optimization of phenolic antioxidants from sweet potato peel vis-a-vis RSM, ANN-GA and application in functional noodles. Food Measure 13, 3267–3284 (2019). https://doi.org/10.1007/s11694-019-00249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00249-7

Keywords

Navigation