Skip to main content
Log in

Mechanical properties and crystalline structures of PPR modified by SEBS elastomer and rare-earth β nucleating agent

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

There is of great interest in modification of polypropylene random copolymer (PPR) to improve the applicability. In this study, poly(styrene–ethylene/butylene–styrene) (SEBS) and a rare-earth β nucleating agent (WBG-II) were utilized to modify PPR (SEBS(m)–WBG-II(n)/PPR systems). The mechanical properties and crystalline structures of modified PPR were investigated. The SEBS elastomer (10 wt%)-coupled WBG-II (0.08 wt%)-modified PPR showed significantly high Izod impact strength relative to sole SEBS elastomer or sole WBG-II-modified PPR. The yield strength, flexural strength and elongation at break were limitedly affected by the modification. The SEBS elastomer partially hindered the nucleation effect of WBG-II, causing decreased relative contents of β-crystal of SEBS(m)–WBG-II(n)/PPR systems. The SEBS elastomer and WBG-II jointly induced crazing and shear deformation absorbed more energy under external shocks, causing the improvement of toughness. The fast cooling of molding benefited Izod impact strength of modified PPR. The combined modifications of PPR throw a new light to further improve the overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amornsakchai T, Sinpatanapan B, Bualek-Limcharoen S, Meesiri W (1999) Composite of aramid fibre (poly-m-phenylene isophthalamide)-thermoplastic elastomers (SEBS): enhancement of tensile properties by maleated-SEBS compatibiliser. Polymer 40:2993–2999. doi:10.1016/S0032-3861(98)00524-2

    Article  CAS  Google Scholar 

  • Bai S, Wang G, Hiver J, Sell CG (2004) Microstructures and mechanical properties of polypropylene/polyamide 6/polyethylene–octene elastomer blends. Polymer 45:3063–3071. doi:10.1016/j.polymer.2004.02.070

    Article  CAS  Google Scholar 

  • Bucknall CB, Clayton D, Keast WE (1972) Rubber-toughening of plastics: part 2: creep mechanisms in HIPS/PPO blends. J Mater Sci 7:1443–1453. doi:10.1007/BF00574936

    Article  CAS  Google Scholar 

  • Denac M, Musil V, Šmit I (2004) Structure and mechanical properties of talc-filled blends of polypropylene and styrenic block copolymers. J Polym Sci Polym Phys 42:1255–1264. doi:10.1002/polb.20015

    Article  CAS  Google Scholar 

  • Ellul MD, Gent AN (1985) The role of molecular diffusion in the adhesion of EPDM and elastomers. J Appl Polym Sci 23:1823–1830. doi:10.1002/pol.1985.180230908

    CAS  Google Scholar 

  • Geng C, Yang G, Bai H, Li Y, Fu Q, Deng H (2014) Towards high-performance polypropylene and its random copolymer: insight into toughening mechanism of supercritical carbon dioxide assisted annealing. J Supercrit Fluids 87:83–92. doi:10.1016/j.supflu.2014.01.003

    Article  CAS  Google Scholar 

  • Hamed GR (2000) Reinforcement of rubber. Rubber Chem Technol 73:524–533. doi:10.5254/1.3547603

    Article  CAS  Google Scholar 

  • Han L, Li X, Li Y, Huang T, Wang Y, Wu J, Xiang F (2010) Influence of annealing on microstructure and physical properties of isotactic polypropylene/calcium carbonate composites with β-phase nucleating agent. Mater Sci Eng A 527:3176–3185. doi:10.1016/j.msea.2010.01.069

    Article  Google Scholar 

  • Ismail H, Suryadiansyah S (2002) Thermoplastic elastomers based on polypropylene/natural rubber and polypropylene/recycle rubber blends. Polym Test 21:389–395. doi:10.1016/S0142-9418(01)00101-5

    Article  CAS  Google Scholar 

  • Jiang Q, Jia H, Wang J, Fang E, Jiang J (2012) Effects of nucleating agents on crystallization behavior and mechanical properties of high-fluid polypropylene. Iran Polym J 2012(21):201–209. doi:10.1007/s13726-012-0024-3

    Article  Google Scholar 

  • Kelnar I, Khunová V, Kotek J, Kaprálková L (2007) Effect of clay treatment on structure and mechanical behavior of elastomer-containing polyamide 6 nanocomposite. Polymer 48:5332–5339. doi:10.1016/j.polymer.2007.06.062

    Article  CAS  Google Scholar 

  • Kusmono ZA, Ishak M, Chow WS, Takeichi T, Rochmadi (2008) Influence of SEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites. Eur Polym J 44:1023–1039. doi:10.1016/j.eurpolymj.2008.01.019

    Article  CAS  Google Scholar 

  • Leng J, Liu H, Yang B, Chen X, Qin Q (2013) Combined effect of modified zeolite 13X and β-nucleating agent on improving β-crystal content and toughening polypropylene random copolymer. Chin J Polym Sci 31:1563–1578. doi:10.1007/s10118-013-1311-y

    Article  CAS  Google Scholar 

  • Li J, Cheung W, Jia D (1999) A study on the heat of fusion of [beta]-polypropylene. Polymer 40:1219–1222. doi:10.1016/S0032-3861(98)00345

    Article  CAS  Google Scholar 

  • Lovinger AJ (1983) Microstructure and unit-cell orientation in α-polypropylene. J Polym Sci Polym Phys 21:97–110. doi:10.1002/pol.1983.180210107

    Article  CAS  Google Scholar 

  • Luo F, Geng C, Wang K, Deng H, Chen F, Fu Q, Na B (2009) New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules 42:9325–9331. doi:10.1021/ma901651f

    Article  CAS  Google Scholar 

  • Luo F, Wang K, Ning N, Geng C, Deng H, Chen F, Fu Q, Qian Y, Zheng D (2011) Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene. Polym Adv Technol 22:2044–2054. doi:10.1002/pat.1718

    Article  CAS  Google Scholar 

  • Mai JH, Zhang MQ, Rong MZ, Bárány T, Ruan WH (2012) Crystallization behavior and mechanical properties of nano-CaCO3/β-nucleated ethylene–propylene random copolymer composites. Express Polym Lett 6:739–749. doi:10.3144/expresspolymlett.2012.79

    Article  CAS  Google Scholar 

  • Maity M, Das CK, Pandey KN, Mathur GN (2000) Polyblends of polyurethane and EVA elastomers (peroxide cure). Int J Polym Mater 45:123–133. doi:10.1080/00914030008034873

    Article  CAS  Google Scholar 

  • Merz EH, Baer M (1956) Studies on heterogeneous polymeric systems. J Polym Sci Polym Chem 22:325–341. doi:10.1002/pol.1956.1202210114

    CAS  Google Scholar 

  • Qu N, Fu Y, An F, Qu J, Wang K, Li B (2006) Study on mechanical properties and crystallization behavior of polypropylene and its blends modified by β crystalline form nucleating agent. Polym Plast Technol 45:637–640. doi:10.1080/03602550600553655

    Article  CAS  Google Scholar 

  • Raab M, Kotek J, Baldrian J (1998) Toughness profile in injection-molded polypropylene: the effect of the β-modification. J Appl Polym Sci 69:2255–2259. doi:10.1002/(SICI)1097-4628(19980912)69

    Article  CAS  Google Scholar 

  • Râpa M, Grosu E, Ghioca P N, Lancu L, Spurcaciu B, Pice A, Gardu R, Cincu C (2016) Evaluation of mechanical and thermal properties of polypropylene random copolymer and triblock copolymer blends. Mater Plast J 53:68–72. http://www.revmaterialeplastice.ro

  • Setz S, Stricker F, Kressler J, Duschek T, Mülhaupt R (1996) Morphology and mechanical properties of blends of isotactic or syndiotactic polypropylene with SEBS block copolymers. J Appl Polym Sci 59:1117–1128. doi:10.1002/(SICI)1097-4628(19960214)59

    Article  CAS  Google Scholar 

  • Stephens CH, Poon BC, Ansems P, Chum SP, Hiltner A, Baer E (2006) Comparison of propylene/ethylene copolymers prepared with different catalysts. J Appl Polym Sci 100:1651–1658. doi:10.1002/app.23788

    Article  CAS  Google Scholar 

  • Tang W, Tang J, Yuan H, Jin R (2011) Crystallization behavior and mechanical properties of polypropylene random copolymer/poly(ethylene–octene) blends. J Appl Polym Sci 122:461–468. doi:10.1002/app.34162

    Article  CAS  Google Scholar 

  • Turmer-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Macromol Chem Phys 75:134–158. doi:10.1002/macp.1964.020750113

    Article  Google Scholar 

  • Turner-Jones A, Cobbold AJ (1968) The β crystalline form of isotactic polypropylene. J Polym Sci Polym Lett 6:539–546. doi:10.1002/pol.1968.110060802

    Article  CAS  Google Scholar 

  • Wu J, Lia C, Wu Y, Leu M, Tsai Y (2010) Thermal resistance and dynamic damping properties of poly (styrene–butadiene–styrene)/thermoplastic polyurethane composites elastomer material. Compos Sci Technol 70:1258–1264. doi:10.1016/j.compscitech.2010.03.014

    Article  CAS  Google Scholar 

  • Xiao W, Feng J (2010) Comparative investigation on crystallization conditions dependence of polymorphs composition for β-nucleated propylene/ethylene copolymer and propylene homopolymer. J Appl Polym Sci 117:3247–3254. doi:10.1002/app.32229

    CAS  Google Scholar 

  • Xie J (2010) Analysis of standards of plastics piping systems for hot and cold water installations and the basic calculation. China Plast 24:91–98 (in chinese)

    CAS  Google Scholar 

  • Zhang YD, Wu CJ, Zhu SN (2002) Fractionation and characterization for a propylene–ethylene random copolymer. Polym J 34:700–708. doi:10.1295/polymj.34.700

    Article  CAS  Google Scholar 

  • Zhang N, Zhang Q, Wang K, Deng H (2011) Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene. J Therm Anal Calorim 107(2):733–743. doi:10.1007/s10973-011-1637-z

    Article  Google Scholar 

  • Zhu Y, Luo F, Bai H, Wang K, Deng H, Chen F, Zhang Q, Fu Q (2013) Synergistic effects of β-modification and impact polypropylene copolymer on brittle–ductile transition of polypropylene random copolymer. J Appl Polym Sci 129:3613–3622. doi:10.1002/app.39107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported in part by National Natural Science Foundation of China (No. 51209216) and Academic Innovation Team foundation of CUPSL (No. 1000-10814340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HY., Lv, Y. Mechanical properties and crystalline structures of PPR modified by SEBS elastomer and rare-earth β nucleating agent. Chem. Pap. 71, 2533–2543 (2017). https://doi.org/10.1007/s11696-017-0249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0249-x

Keywords

Navigation