Skip to main content
Log in

Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Three-dimensional TiO2 microspheres doped with N were synthesized by a simple single-step solvothermal method and the sample treated for 15 h (hereafter called TMF) was then used as scattering layers in the photoanodes of dye-sensitized solar cells (DSSCs). The TMF was characterized using scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction, and X-ray photoelectron spectroscopy. The TMF had a high surface area of 93.2 m2∙g–1 which was beneficial for more dye-loading. Five photoanode films with different internal structures were fabricated by printing different numbers of TMF scattering layers on fluorine-doped tin oxide glass. UV-vis diffuse reflection spectra, incident photon-to-current efficiencies, photocurrent-voltage curves and electrochemical impedance spectroscopy were used to investigate the optical and electrochemical properties of these photoanodes in DSSCs. The presence of nitrogen in the TMF changed the TMF microstructure, which led to a higher open circuit voltage and a longer electron lifetime. In addition, the presence of the nitrogen significantly improved the light utilization and photocurrent. The highest photoelectric conversion efficiency achieved was 8.08%, which is much higher than that derived from typical P25 nanoparticles (6.52%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  2. Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2): 145–153

    Article  Google Scholar 

  3. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dyesensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663

    Article  CAS  Google Scholar 

  4. Yella A, Lee H, Tsao H, Yi C, Chandiran A, Nazeeruddin M, Diau E, Yeh C, Zakeeruddin S, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634

    Article  CAS  Google Scholar 

  5. Chen W, Qiu Y, Yang S. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12(32): 9494–9501

    Article  CAS  Google Scholar 

  6. Chen X, Mao S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959

    Article  CAS  Google Scholar 

  7. Tao X, Wang Y, Zhang X, Sun H, Zhang Q, Niu L, Liu J, Zhou X. Visible-light wavelength matched microsphere assembly of TiO2 superfine nanorods and the enhanced photovoltaic performance. Journal of Alloys and Compounds, 2015, 631: 202–208

    Article  CAS  Google Scholar 

  8. Ke W, Fang G, Tao H, Qin P, Wang J, Lei H, Liu Q, Zhao X. In situ synthesis of NiS nanowall networks on Ni foam as a TCO-free counter electrode for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2014, 6(8): 5525–5530

    Article  CAS  Google Scholar 

  9. Liu Y, Wang S, Shan Z, Li X, Tian J, Mei Y, Ma H, Zhu K. Anatase TiO2 hollow spheres with small dimension fabricated via a simple preparation method for dye-sensitized solar cells with an ionic liquid electrolyte. Electrochimica Acta, 2012, 60: 422–427

    Article  CAS  Google Scholar 

  10. Ding Y, Xia X, Chen W, Hu L, Mo L, Huang Y, Dai S. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2. Nano Research, 2016, 9(7): 1891–1903

    Article  CAS  Google Scholar 

  11. Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser J, Humphry-Baker R, Zakeeruddin S, Grätzel M, Bäuerle P. Significant improvement of dye-sensitized solar cell performance by small structural modification in p-conjugated donor-acceptor dyes. Advanced Functional Materials, 2012, 22(6): 1291–1302

    Article  CAS  Google Scholar 

  12. Bach U, Daeneke T. A solid advancement for dye-sensitized solar cells. Angewandte Chemie International Edition, 2012, 51(42): 10451–10452

    Article  CAS  Google Scholar 

  13. Gao Y, Feng Y, Zhang B, Zhang F, Peng X, Liu L, Meng S. Double-N doping: A new discovery about N-doped TiO2 applied in dyesensitized solar cells. RSC Advances, 2014, 4(33): 16992–16998

    Article  CAS  Google Scholar 

  14. Zhang Z, Cui Z, Zhang K, Feng Y, Meng S. Samarium ions doped titania photoelectrodes for efficiency influence of dye-sensitized solar cells. Journal of the Electrochemical Society, 2016, 163(5): A644–A649

    Article  CAS  Google Scholar 

  15. Cahen D, Hodes G, Grätzel M, Guillemoles J, Riess I. Nature of photovoltaic action in dye-sensitized solar cells. Journal of Physical Chemistry B, 2000, 104(9): 2053–2059

    Article  CAS  Google Scholar 

  16. Pan H, Qian J, Cui Y, Xie H, Zhou X. Hollow anatase TiO2 porous microspheres with V-shaped channels and exposed (101) facets: Anisotropic etching and photovoltaic properties. Journal of Materials Chemistry, 2012, 22(13): 6002–6009

    Article  CAS  Google Scholar 

  17. He X, Li X, Zhu M. The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells. Journal of Power Sources, 2016, 333: 10–16

    Article  CAS  Google Scholar 

  18. Bakhshayesh A, Azadfar S. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dyesensitized solar cells. Frontiers of Chemical Science and Engineering, 2015, 9(4): 532–540

    Article  CAS  Google Scholar 

  19. Li W, Yang J, Jiang Q, Luo Y, Hou Y, Zhou S, Zhou Z. Bi-layer of nanorods and three-dimensional hierarchical structure of TiO2 for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2015, 284: 428–434

    Article  CAS  Google Scholar 

  20. Kim D, Kim J, Shin S, Cho J, Cho I. Facile one-pot synthesis of selfassembled quantum-rod TiO2 spheres with enhanced charge transport properties for dye-sensitized solar cells and solar watersplitting. Journal of Alloys and Compounds, 2017, 697: 222–230

    Article  CAS  Google Scholar 

  21. Wang G, Zhu X, Yu J. Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2015, 278: 344–351

    Article  CAS  Google Scholar 

  22. Zhao P, Yao S,Wang M,Wang B, Sun P, Liu F, Liang X, Sun Y, Lu G. High-efficiency dye-sensitized solar cells with hierarchical structures titanium dioxide to transfer photogenerated charge. Electrochimica Acta, 2015, 170: 276–283

    Article  CAS  Google Scholar 

  23. Sun X, Zhou X, Xu Y, Sun P, Huang N, Sun Y. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO2 based dye-sensitized solar cells. Applied Surface Science, 2015, 337: 188–194

    Article  CAS  Google Scholar 

  24. Ding Y, Mo L, Tao L, Ma Y, Hu L, Huang Y, Fang X, Yao J, Xi X, Dai S. TiO2 nanocrystalline layer as a bridge linking TiO2 submicrospheres layer and substrates for high-efficiency dye-sensitized solar cells. Journal of Power Sources, 2014, 272: 1046–1052

    Article  CAS  Google Scholar 

  25. Yan K, Qiu Y, Chen W, Zhang M, Yang S. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy & Environmental Science, 2011, 4(6): 2168–2176

    Article  CAS  Google Scholar 

  26. Chen D, Huang F, Cheng Y, Caruso R. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210

    Article  CAS  Google Scholar 

  27. Kim Y, Lee M, Kim H, Lim G, Choi Y, Park N, Kim K, Lee W. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Advanced Materials, 2009, 21(36): 3668–3673

    Article  CAS  Google Scholar 

  28. Son S, Hwang S, Kim C, Yun J, Jang J. Designed, synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(11): 4815–4820

    Article  CAS  Google Scholar 

  29. Xiong Y, He D, Jin Y, Cameron P, Edler K. Ordered mesoporous particles in titania films with hierarchical structure as scattering layers in dye-sensitized solar cells. Journal of Physical Chemistry C, 2015, 119(39): 22552–22559

    Article  CAS  Google Scholar 

  30. Hwang D, Sung S. Controlled fabrication of mesoporous TiO2 hierarchical structures as scattering layers to enhance the power conversion efficiency of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18(44): 30254–30260

    Article  CAS  Google Scholar 

  31. Huber E, Frost M. Light scattering by small particles. Journal of Water Supply: Research & Technology—Aqua, 1998, 47(2): 87–94

    Article  CAS  Google Scholar 

  32. Peng X, Feng Y, Meng S, Zhang B. Preparation of hierarchical TiO2 films with uniformly or gradually changed pore size for use as photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2014, 115: 255–262

    Article  CAS  Google Scholar 

  33. Liu M, Piao L, Zhao L, Ju S, Yan Z, He T, Zhou C, Wang W. Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chemical Communications, 2010, 46(10): 1664–1666

    Article  CAS  Google Scholar 

  34. Lin J, Zhao L, Heo Y, Wang L, Bijarbooneh F, Mozer A, Nattestad A, Yamauchi Y, Dou S, Kim J. Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 2015, 11: 557–567

    Article  CAS  Google Scholar 

  35. Zhang Y, Zhang B, Peng X, Liu L, Dong S, Lin L, Chen S, Meng S, Feng Y. Preparation of dye sensitized solar cells with high photocurrent and photovoltage by using mesoporous TiO2 particles as photoanode material. Nano Research, 2015, 8(12): 3830–3841

    Article  CAS  Google Scholar 

  36. Biswas S, Hossain M, Takahashi T. Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode. Thin Solid Films, 2008, 517(3): 1284–1288

    Article  CAS  Google Scholar 

  37. Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619

    Article  CAS  Google Scholar 

  38. Ramasamy E, Lee J. Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells. Energy & Environmental Science, 2011, 4(7): 2529–2536

    Article  CAS  Google Scholar 

  39. Guo W, Shen Y,Wu L, Gao Y, Ma T. Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. Journal of Physical Chemistry C, 2011, 115(43): 21494–21499

    Article  CAS  Google Scholar 

  40. Qiu X, Burda C. Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chemical Physics, 2007, 339(1): 1–10

    Article  CAS  Google Scholar 

  41. Fu Y, Du H, Zhang S, Huang W. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Materials Science and Engineering A, 2005, 403(1): 25–31

    Article  Google Scholar 

  42. Huo K, Wang H, Zhang X, Cao Y, Chu P. Heterostructured TiO2 nanoparticles/nanotube arrays: In situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem, 2012, 77(4): 323–329

    Article  CAS  Google Scholar 

  43. Yu I, Kim Y, Kim H, Lee C, Lee W. Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21(2): 532–538

    Article  CAS  Google Scholar 

  44. Xu J, Wang G, Fan J, Liu B, Cao S, Yu J. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. Journal of Power Sources, 2015, 274: 77–84

    Article  CAS  Google Scholar 

  45. Park N, van de Lagemaat J, Frank A. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. Journal of Physical Chemistry B, 2000, 104(38): 8989–8994

    Article  CAS  Google Scholar 

  46. Kang T, Chun K, Hong J, Moon S, Kim K. Enhanced stability of photocurrent-voltage curves in Ru(II)-dye-sensitized nanocrystalline TiO2 electrodes with carboxylic acids. Journal of the Electrochemical Society, 2000, 147(8): 3049–3053

    Article  CAS  Google Scholar 

  47. Tian H, Hu L, Zhang C, Liu W, Huang Y, Mo L, Guo L, Sheng J, Dai S. Retarded charge recombination in dye-sensitized nitrogendoped TiO2 solar cells. Journal of Physical Chemistry C, 2010, 114(3): 1627–1632

    Article  CAS  Google Scholar 

  48. Chang H, Lo Y. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy, 2010, 84(10): 1833–1837

    Article  CAS  Google Scholar 

  49. Dai G, Zhao L, Li J, Wan L, Hu F, Xu Z, Dong B, Lu H, Wang S, Yu J. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. Journal of Colloid and Interface Science, 2012, 365(1): 46–52

    Article  CAS  Google Scholar 

  50. Yang J, Gao Z, Tian L, Ma P, Wu D, Yang L. Spindle-like TiO2 with high crystallinity and its application in dye sensitised solar cell. Micro & Nano Letters, 2011, 6(8): 737–740

    Article  CAS  Google Scholar 

  51. Liu W, Liang Z, Kou D, Hu L, Dai S. Wide frequency range diagnostic impedance behavior of the multiple interfaces charge transport and transfer processes in dye-sensitized solar cells. Electrochimica Acta, 2013, 88: 395–403

    Article  CAS  Google Scholar 

  52. Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S. Influence of TiO2 nanoparticle size on electron diffusion and Recombination in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B, 2003, 107(33): 8607–8611

    Article  CAS  Google Scholar 

  53. Liao J, Lei B, Kuang D, Su C. Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy & Environmental Science, 2011, 4(10): 4079–4085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of the National Natural Science Foundation of China for international academic exchanges (Grant Nos. 21676187 and 21476162), and by National Key Technologies R&D Program (No. 51020105010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxian Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhang, K., Xing, G. et al. Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells. Front. Chem. Sci. Eng. 11, 395–404 (2017). https://doi.org/10.1007/s11705-017-1643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1643-1

Keywords

Navigation