Skip to main content
Log in

Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Comparative study about the salt-induced oxidative stress and lipid composition has been realised in primary root tissues for two varieties of maize (Zea mays L.) in order to evaluate their responses to salt stress. The root growth, root water content (WC), hydrogen peroxide (H2O2) generation, lipid peroxidation, membrane stability index and the changes in the profile of fatty acids composition were investigated. Salinity impacts in term of root growth, water content, H2O2 generation, lipid peroxidation and membrane destabilisation were more pronounced in primary roots of Aristo than in those of Arper indicating more sensitivity of the first variety. It was confirmed by gas chromatography that the composition of fatty acids in roots of both varieties was constituted mainly by 16:0 and 18:0 as major saturated fatty acids and 18:1ω9, 18:2ω6 and 18:3ω3 as major unsaturated fatty acids. Total lipid extracts from the roots of both varieties showed that the lipid saturation level increased under salt stress, notwithstanding the increased proportion of polyunsaturated fatty acids. The changes in lipid saturation being predominantly due to decreases in oleic acid (18:1ω9) and increases in palmitic acid (16:0). However, Arper root extracts contained a lower proportion of saturated lipids than Aristo. The enhanced proportion of highly polyunsaturated fatty acids especially linolenic and eicosapentaenoic acids was considered to be the characteristic of the relatively salt tolerance in Arper roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FM:

Fresh mass

DM:

Dry mass

WC:

Root water content

ROS:

Reactive oxygen species

H2O2 :

Hydrogen peroxide

TiCl4 :

Titanium chloride

MDA:

Malondialdehyde

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

TBARS:

Total 2-thiobarbituric acid reactive substances

FA:

Fatty acids

U/S:

Ratio of unsaturated to saturated fatty acids

MSI:

Membrane stability index

References

  • Azevedo Neto AD, Prisco JT, Eneas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • Cachorro P, Ortiz A, Cerda A (1993) Effects of saline stress and calcium on lipid composition in bean roots. Phytochemistry 32:1131–1136. doi:10.1016/S0031-9422(00)95077-5

    Article  CAS  Google Scholar 

  • Cakmak I, Horst J (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x

    Article  CAS  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157. doi:10.1023/A:1010692104861

    Article  CAS  Google Scholar 

  • Chen S, Li J, Fritz E, Wang S, Hütermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage 168:217–230. doi:10.1016/S0378-1127(01)00743-5

    Article  Google Scholar 

  • das Neves JPC, Ferreira LFP, Vaz MM, Gazarini LC (2008) Gas exchange in the salt marsh species Atriplex portulacoides L. and Limoniastrum monopetalum L. in southern Portugal. Acta Physiol Plant 30:91–97

    Article  CAS  Google Scholar 

  • de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2005) Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot 54:69–76

    Article  CAS  Google Scholar 

  • Demiral T, Türkan I (2006) Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ Exp Bot 56:72–79

    Article  CAS  Google Scholar 

  • Elenkov I, Stefanov K, Dimitrova-Konaklieva S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42:39–44

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan A (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic 113:120–128

    Article  CAS  Google Scholar 

  • Fujii S, Uenaka M, Nakayama S, Yamamoto R, Mantani S (2001) Effects of sodium chloride on the fatty acids composition in Boekelovia hooglandii (Ochromonadales, Chrysophyceae). Phycol Res 49:73–77

    Article  CAS  Google Scholar 

  • Hajlaoui H, Denden M, Bouslama M (2006) Effet du chlorure de sodium sur les critères morpho-physiologiques et productifs du pois chiche (Cicer arietinum L.). Ann INRGREF 8:171–187

    Google Scholar 

  • Hajlaoui H, Denden M, Bouslama M (2007) Etude de la variabilité intraspécifique de tolérance au stress salin du pois chiche (Cicer arietinum L.) au stade germination. Tropicultura 25(3):168–173

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed  CAS  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide function as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Jbir N, Chaïbi W, Ammar S, Jemmali A, Ayadi A (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. C R Acad Sci III 324:863–868

    PubMed  CAS  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    Article  CAS  Google Scholar 

  • Khan MH, Singha Ksh LB, Panda SK (2002) Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress. Acta Physiol Plant 24:145–148

    Article  CAS  Google Scholar 

  • Konieczny R, Libik M, Tuleja M, Niewiadomska E, Miszalski Z (2008) Oxidative events during in vitro regeneration of sunflower. Acta Physiol Plant 30:71–79

    Article  CAS  Google Scholar 

  • Kuiper PJC (1984) Functioning of plant cell membrane under saline conditions: membrane lipid composition and ATPase. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 77–91

    Google Scholar 

  • Liang Y, Zhang W, Chen Q, Ding R (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37

    Article  CAS  Google Scholar 

  • Lin H, Wu L (1996) Effects of salt stress on root plasma membrane characteristics of salt-tolerant and salt-sensitive Buffalograss clones. Environ Exp Bot 36:239–254

    Article  CAS  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Malkit A, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant Alga Dunaliella salina. Plant Physiol 129:1320–1329

    Article  CAS  Google Scholar 

  • Mansour MMF (1995) Changes in cell permeability and lipid content in wheat roots induced by NaCl. Biol Plant 37:143–145

    Article  CAS  Google Scholar 

  • Mansour MMF, Lee-Stadelmann OY, Stadelmann EJ (1993) Salinity stress and cytoplasmic factors. A comparison of cell permeability and lipid partiality in salt sensitive and salt resistant cultivars and lines of Triticum aestivum and Hordeum vulgare. Physiol Plant 88:141–148

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160

    Article  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Panou-Filotheou H, Bosabalidis AM (2004) Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum). Plant Sci 166:1497–1504

    Article  CAS  Google Scholar 

  • Patterson BD, Mackae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    Article  PubMed  CAS  Google Scholar 

  • Qiujie D, Bin Y, Shaobai H (1997) Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV B radiation. Physiol Plant 101:301–308

    Article  Google Scholar 

  • Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64:1659–1668

    CAS  Google Scholar 

  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50

    PubMed  Google Scholar 

  • Surjus A, Durand M (1996) Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot 47:17–23

    Article  CAS  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Seliskar DM, Gallagher JL (1998) Stress tolerance in the marsh plant Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition. Physiol Plant 102:307–317

    Article  CAS  Google Scholar 

  • Zhang W, Chen Q, Liu Y (2002) Relationship between H+-ATPase activity and fluidity of tonoplast in barley roots under NaCl stress. Acta Bot Sin 44:292–296

    CAS  Google Scholar 

  • Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371

    Article  PubMed  CAS  Google Scholar 

  • Zhao FG, Qin P (2005) Protective effects of exogenous fatty acids on root tonoplast function against salt stress in barley seedlings. Environ Exp Bot 53:215–223

    Article  CAS  Google Scholar 

  • Zhong H, Läuchli A (1994) Spatial distribution of solutes K+, Na+, Ca++ and their deposition rates in the growth zone of primary cotton roots: effects of NaCl and CaCl2. Planta 194:31–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hichem Hajlaoui.

Additional information

Communicated by S. Weidner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajlaoui, H., Denden, M. & Ayeb, N.E. Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots. Acta Physiol Plant 31, 787–796 (2009). https://doi.org/10.1007/s11738-009-0293-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0293-4

Keywords

Navigation