Skip to main content
Log in

Characterization of shear stresses in nickel-based superalloy Mar-M247 when orthogonal machining with coated carbide tools

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 m/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DUHI D N, SULLIVAN C P. Some effects of hafnium additions on the mechanical properties of a columnar-grained nickel-base supper-alloy [J]. Journal of Metals, 1971, 23(7): 38–40.

    Google Scholar 

  2. SIMS C T, HAGEL W C. The superalloys [M]. New York: Wiley-Inter Science, 1972.

    Google Scholar 

  3. GE H L, YOUDELIS W V, CHEN G L, ZHU Q. Interfacial segregation of magnesium in nickel base superalloy: Carbide morphology and properties [J]. J Mater Sci Technol, 1989, 5: 985–990.

    Article  Google Scholar 

  4. LI Y, SUN C, LIU J, CHEN G. High Temperature Technology, 1997, 5(4): 201–204.

    Google Scholar 

  5. BOR H Y, CHAO C G, MA C Y. The effects of Mg micro addition on the mechanical behavior and fracture mechanism of MAR-M247 superalloy at elevated temperatures [J]. Metallurgical and Materials Transactions A, 1999, 30A(3): 55l–561.

    Google Scholar 

  6. LI Z, MILLS K C. The effect of γ′ content on the densities of Ni-based superalloys [J]. Metall Mater Trans B, 2006, 37: 81–790.

    Article  Google Scholar 

  7. EZUGWU E O. Key improvements in the machining of difficult-to-cut aerospace superalloys [J]. Int J of Mach Tool Manuf, 2005, 45: 1353–1367.

    Article  Google Scholar 

  8. HSU C Y, HUANG C K, WU C Y. Milling of MAR-M247 nickel-based superalloy with high temperature and ultrasonic aiding [J]. Int J Adv Manuf Technol, 2007, 34(9/10): 857–866.

    Article  Google Scholar 

  9. CHEN Y C, LIAO Y S. Study on wear mechanisms in drilling of Inconel 718 superalloy [J]. J Mater Process Technol, 2003, 140: 269–273.

    Article  Google Scholar 

  10. GAO G F, ZHAO B, JIAO F, LIU C S. Research on the influence of the cutting conditions on the surface microstructure of ultra-thin wall parts in ultrasonic vibration cutting [J]. J Mater Process Technol, 2002, 129: 66–70.

    Article  Google Scholar 

  11. JAWAID A, KOKSAL S, SHARIF S. Wear behavior of PVD and CVD coated carbide tools when face milling Inconel 718 [J]. Tribol Trans, 2000, 43(2): 325–331.

    Article  Google Scholar 

  12. EZUGWU E O, BONNEY J, OLAJIRE K A. Evaluation of the machinability of nickel-base, Inconel 718, alloy with nano-ceramic cutting tools [J]. Tribol Trans, 2002, 45(4): 506–511.

    Article  Google Scholar 

  13. KAMATA Y, OBIKAWA T. High speed MQL finish-turning of Inconel 718 with different coated tools [J]. J Mater Process Technol, 2007, 192/193: 281–286.

    Article  Google Scholar 

  14. ARUNACHALAM R M, MANNAN M A, SPOWAGE A C. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools [J]. Int J Mach Tool Manuf, 2004, 44: 1481–1491.

    Article  Google Scholar 

  15. THAKUR D G, RAMAMOORTHY B, VIJAYARAGHAVAN L. A study on the parameters in high-speed turning of superalloy Inconel 718 [J]. Mater Manuf Processes, 2009, 24(4): 497–503.

    Article  Google Scholar 

  16. DUDZINSKI D, DEVILLEZ A, MOUFKI A, LARROUQUERE D, VIGNEAU J, ZERROUKI V. A review of developments towards dry and high speed machining of Inconel 718 alloy [J]. Int J Mach Tool Manuf, 2004, 44(4): 439–456.

    Article  Google Scholar 

  17. ARUNACHALAM R, MANNAN M A. Machinability of nickel based high temperature alloys [J]. Mach Sci Technol, 2000, 4(1): 127–168.

    Article  Google Scholar 

  18. OXLEY P L B. Mechanics of machining: An analytical approach to assessing machinability [M]. New York, USA: Ellis Horwood Limited, 1989: 100–120.

    Google Scholar 

  19. KITA Y, IDO M, KAWASAKI N. A study of metal flow ahead of tool face with large negative rake angle [J]. ASME J Eng Ind, 1982, 104: 319–325.

    Article  Google Scholar 

  20. CONNOLLY R, RUBENSTEIN C. The mechanics of continuous chip formation in orthogonal cutting [J]. Int J Mach Tool Des Res, 1968, 8: 159–187.

    Article  Google Scholar 

  21. TOROPOV A, KO S L. A model of burr formation in the feed direction in turning [J]. Machine Tools ºanufacture, 2006, 46(15): 1913–1920.

    Article  Google Scholar 

  22. SHAW M C, VYAS A. Mechanics of saw-tooth chip formation in metal cutting [J]. J Manuf Sci Eng, 1999, 121(2): 163–172.

    Article  Google Scholar 

  23. NALBANT M, ALTIN A, GOKKAYA H. The effect of coating material and geometry of cutting tool and cutting speed on machinability properties of Inconel 718 super alloys [M]. Mater, 2007, 28: 1719–1724.

    Article  Google Scholar 

  24. JUAN M S, MARTIN O, SANTOS F. Experimental study of friction from cutting forces in orthogonal milling [J]. Int J Mach Tools Manuf, 2010, 50(7): 591–600.

    Article  Google Scholar 

  25. GHANI J A, CHOUDHURY I A, HASSAN H H. Application of Taguchi method in the optimization of end milling parameters [J]. J Mater Process Technol, 2004, 145: 84–92.

    Article  Google Scholar 

  26. KOUNTANYAA R, AL-ZKERI I, ALTANC T. Effect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steel [J]. J Mater Process Tech, 2009, 209: 5068–5076.

    Article  Google Scholar 

  27. SHAW M C. Metal cutting principles [M]. Second Edition. Oxford, UK: Oxford University Press, 2004.

    Google Scholar 

  28. SHARMAN A R C, DEWES R C, ASPINWALL D K. Tool life when high speed ball nose end milling Inconel 718 [J]. J Mater Process Technol, 2001, 118: 29–35.

    Article  Google Scholar 

  29. SHARMAN A R C, HUGHES J I, RIDGWAY K. An analysis of the residual stresses generated in Inconel 718 when turning [J]. J Mater Process Technol, 2006, 173: 359–367.

    Article  Google Scholar 

  30. PRENGEL H G, JINDAL P C, WENDT K H, SANTHANAM A T, HEGDE P L, PENICH R M. Surface & Coatings Technology, 2001, 139(1): 25–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-hsien Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Sh., Su, Sc. & Jehng, Wd. Characterization of shear stresses in nickel-based superalloy Mar-M247 when orthogonal machining with coated carbide tools. J. Cent. South Univ. 21, 862–869 (2014). https://doi.org/10.1007/s11771-014-2011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2011-7

Key words

Navigation