Skip to main content
Log in

Accurate estimation of soil shear strength parameters

抗剪强度参数统计特征的精确估计方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters. There are three methods often used to estimate soil shear strength parameters, i.e., moment method, 3-sigma rule and linear regression method. In this study, the accuracy of these three methods is compared. Traditional linear regression method (LRM) can only offer the mean of shear strength parameters. Some engineers misuse the standard error of shear strength indexes as the standard deviations. Such misuse may highly underestimate the uncertainty and induce high risk to the geotechnical design. A modified LRM is proposed to determine both the mean and variance of shear strength parameters. The moment method, three-sigma rule and LRM are used to analyze the tri-axial test data in Xiaolangdi Hydraulic Project and three numerical shear strength tests. The results demonstrate that: 1) The modified LRM can offer the most accurate estimation to shear strength parameters; 2) A dimensionless formula is much preferred in LRM rather than a dimensional formula. The stress ratio formula is much better than stress relation in the shear strength parameter analysis. The proposed method is applicable to shear strength parameter analysis for tri-axial test data, direct shear test and the un-drained shear strength test of stratified clay.

摘要

强度参数的精度对岩土工程的成本和安全都至关重要。首先, 本文对比了三种现有的强度参数 统计特征计算方法的精度。在工程实践中, 线性回归中的均值方差经常被误用为强度参数的方差, 这 会导致很大的误差。本文提出了一种改进的线性回归方法, 它能够精确估计强度参数的均值和方差。改进的线性回归方法被用于小浪底心墙坝的抗剪强度数据分析, 结果表明: 改进线性回归方法能够提 供最精确的强度参数估计; 将无量纲的公式用于线性回归效果要好于有量纲的公式。本文提出的方法 不仅能够用于三轴强度数据的分析, 还可以应用于直剪数据分析以及成层土体的不排水强度分析。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PHOON K K. Role of reliability calculations in geotechnical design [J]. Georisk, 2017, 11(1): 4–21.

    Google Scholar 

  2. PHOON K K, RETIEF J V, CHING J, DITHINDE M, SCHWECKEN-DIEK T, WANG Y, ZHANG L M. Some observations on ISO2394: 2015 Annex D (reliability of geotechnical structures) [J]. Structural Safety, 2016, 62: 24–33. DOI: https://doi.org/10.1016/j.strusafe.2016.05.003.

    Article  Google Scholar 

  3. ZHANG J, WANG H, HUANG H W, CHEN L H. System reliability analysis of soil slopes stabilized with piles [J]. Engineering Geology, 2017, 229(7): 45–52. DOI: https://doi.org/10.1016/j.enggeo.2017.09.009.

    Article  Google Scholar 

  4. KHALKHALI A, SARMADI M, YOUSEFI S. Reliability-based robust multi-objective optimization of a 5-DOF vehicle vibration model subjected to random road profiles [J]. Journal of Central South University, 2017, 24(1): 104–113.

    Article  Google Scholar 

  5. CAO Z, WANG Y. Bayesian model comparison and characterization of undrained shear strength [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014018. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001108.

    Article  Google Scholar 

  6. LI D Q, ZHANG L, TANG X S, ZHOU W, LI J H, ZHOU C B, PHOON K K. Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability [J]. Computers and Geotechnics, 2015, 68: 184–195. DOI: https://doi.org/10.1016/j.compgeo.2015.04.002.

    Article  Google Scholar 

  7. ZHANG L M, TANG W H, ZHANG L L. ZHENG J G. Reducing uncertainty of prediction from empirical correlations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 526–534. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(526).

    Article  Google Scholar 

  8. ZHANG L L, ZHANG L M, TANG W H. Uncertainties of field pullout resistance of soil nails [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 966–972. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000014.

    Article  Google Scholar 

  9. ZHANG L L, ZHANG J, ZHANG L M, TANG W H. Back analysis of slope failure with Markov chain Monte Carlo simulation [J]. Computers and Geotechnics, 2010, 37(7): 905–912. DOI: https://doi.org/10.1016/j.compgeo.2010.07.009.

    Article  Google Scholar 

  10. AL-NAQSHABANDY M S, LARSSON S. Effect of uncertainties of improved soil shear strength on the reliability of embankments [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 619–632. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000798.

    Article  Google Scholar 

  11. ORR T L L. Defining and selecting characteristic values of geotechnical parameters for designs to Eurocode 7 [J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2017, 11(1): 103–115.

    Google Scholar 

  12. NG I T, YUEN K V, DONG L. Estimation of undrained shear strength in moderately OC clays based on field vane test data [J]. Acta Geotechnica, 2017, 12(1): 145–156. DOI: https://doi.org/10.1007/s11440-016-0433-0.

    Article  Google Scholar 

  13. ZHANG S, DU H, HARBOR J. The effect of confining pressure and water content on compressive strength and deformation of ice-rich silty sand [J]. Permafrost and Periglacial Processes, 2017, 28(1): 298–305. DOI: https://doi.org/10.1002/ppp.1906

    Article  Google Scholar 

  14. DUNCAN J M. Factors of safety and reliability in geotechnical engineering [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(4): 307–316. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307).

    Article  Google Scholar 

  15. FOYE K C, SALGADO R, SCOTT B. Assessment of variable uncertainties for reliability-based design of foundations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1197–1207. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1197).

    Article  Google Scholar 

  16. GAO Y, WANG Y H, SU C P. Mechanisms of aging-induced modulus changes in sand under isotropic and anisotropic loading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 139(3): 470–482. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000772.

    Article  Google Scholar 

  17. XIE Q. Report of digging and sampling experiment of cut-off wall of main dam of Xiaolangdi and comprehensive analysis of site detection results [R]. 2001. (in Chinese)

  18. WEISBERG S. Applied linear regression [M]. New Jersey: John Wiley & Sons, Inc., SHoboken, 2005.

    Book  MATH  Google Scholar 

  19. LINDLEY D V. Regression lines and the linear functional relationship [J]. Supplement to the Journal of the Royal Statistical Society, 1947, 9(2): 218–244.

    Article  MathSciNet  MATH  Google Scholar 

  20. PARADINE C G, RIVETT B H. Statistics for technologists [M]. London: English Universities Press Ltd. 1953.

    MATH  Google Scholar 

  21. FISHER R A, YATES F. Statistical tables, for biological agricultural and medical research, [M]. 6th Edition. London: Oliver & Boyd, 1963.

    MATH  Google Scholar 

  22. YAN X, SU X G. Linear regression analysis–Theory and Computing [M]. Singapore: World Scientific Publishing Co. Pte. Ltd. 2009.

    Book  MATH  Google Scholar 

  23. LUMB P. The marine soils of Hong Kong and Macau [C]//Proceedings of the International Symposium on Soft Clay. Bangkok, Thailand, 1977: 45–58.

    Google Scholar 

  24. DNV/Norsk. Hydro technical report No. 2006-1437. guidance notes statistical representation of soil data [R]. 2006.

    Google Scholar 

  25. MARK D M, CHURCH M. On the misuse of regression in earth science [J]. Mathematical Geology, 1977, 9(1): 63–75.

    Article  Google Scholar 

  26. MANN C J. Misuses of linear regression in earth sciences [M]//Use and Abuse of Statistical Methods in the Earth Sciences. New York: Oxford University Press, 1987, 1: 74–106.

    Google Scholar 

  27. KENDALL M G, STUART A. The advanced theory of statistics, vol. 2 [M]. New York: Hafner, 1965.

    MATH  Google Scholar 

  28. CHEN Li-hong, CHEN Zu-yu, LI Guang-xin. A modified linear regression method to estimate shear strength parameters [J]. Rock and Soil Mechanics, 2007, 28(7): 1421–1426. (in Chinese)

    Google Scholar 

  29. LUMB P. Safety factors and the probability distribution of soil strength [J]. Canadian geotechnical Journal, 1970, 7(3): 225–242.

    Article  Google Scholar 

  30. CHEN L H, CHEN Z Y. Effect of nonlinear strength of rockfill on slope stability of high earth-rock dam [J]. Rock and Soil Mechanics, 2007, 9(28): 1807–1810. (in Chinese)

    Google Scholar 

  31. KULHAWY F H. On the evaluation of soil properties [J]. ASCE Geotechnical Special Publication, 1992, 31: 95–115.

    Google Scholar 

  32. PHOON K K, KULHAWY F H. Characterization of geotechnical variability [J]. Canadian Geotechnical Journal, 1999, 36: 612–624. DOI: https://doi.org/10.1139/t99-038.

    Article  Google Scholar 

  33. CHING J Y, CHEN J R, YEH J Y, PHOON K K. Updating uncertainties in friction angles of clean sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(2): 217–229. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Li  (李旭).

Additional information

Foundation item: Project(2017YFC0404803) supported by the National Key Research and Development Program of China; Project(51678040) supported by the National Natural Science Foundation of China; Project(8192034) supported by the Beijing Municipal Natural Science Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Lh., Li, X., Xu, Y. et al. Accurate estimation of soil shear strength parameters. J. Cent. South Univ. 26, 1000–1010 (2019). https://doi.org/10.1007/s11771-019-4066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4066-y

Key words

关键词

Navigation