Skip to main content
Log in

Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries

钠离子电池正极复合材料 Na0.44MnO2/石墨烯的合成与性能

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Na0.44MnO2 nanorods have been prepared by a hydrothermal method. The experimental parameters have been systematically investigated and optimized. The results show that Na0.44MnO2 nanorods obtained via the hydrothermal treatment at 200 °C for 16 h show the best electrochemical properties, which deliver the high initial discharge capacity of 110.7 mA·h/g at 50 mA/g in potential window 2.0–4.0 V To further improve their electrochemical properties, a ball milling process with graphene has been carried out to obtain Na0.44MnO2/graphene composite. The initial discharge capacity of Na0.44MnO2/graphene composite is 106.9 mA·h/g at a current density of 50 mA/g. After 100 cycles, the residual discharge capacity is 91.8 mA·h/g and the capacity retention rate is 85.9%, which is much higher than that of pristine Na0.44MnO2 nanorods (74.7%) at the same condition. What is more, when the current density reaches 500 and 1000 mA/g, the corresponding discharge capacities of Na0.44MnO2/graphene composite are about 89 and 78 mA·h/g, respectively, indicating outstanding rate capability.

摘要

本文通过水热法合成了 Na0.44MnO2 纳米棒,并系统地研究和优化了合成该材料的实验参数。实 验结果表明,在 200 °C 下,水热反应 16 h 获得的 Na0.44MnO2 纳米棒展现了最好的电化学性能。在 2.0~4.0 V 的电压窗口, 50 mA/g 电流密度下,该材料具有 110.7 mA·h/g 的初始放电比容量,循环 100 周后的容量保持率为 74.7%. 为了进一步提高该材料的电化学性能,将石墨烯与其混合球磨,得 到了 Na0.44MnO2/石墨烯复合材料。在 50 mA/g 电流密度下,该复合材料首次放电比容量为 106.9 mA·h/g, 100 周循环后,放电比容量仍保持为 91.8 mA·h/g, 容量保持率为 85.9%. 此外,当电 流密度提高到 500 和 1000 mA/g 时,该复合材料分别具有 89 和 78 mA·h/g 的放电比容量。与石墨烯 复合, Na0.44MnO2 材料的循环性能与倍率性能得到了显著提高.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SLATER M D, KIM D, LEE E, JOHNSON C S. Sodium-ion batteries [J]. Advanced Functional Materials, 2013, 23(8): 947–958.

    Article  Google Scholar 

  2. XIA Jing, LIU Li, XIE Jian-jun, YAN Han-xiao, YUAN Yu-ting, CHEN Man-fang, HUANG Cheng, ZHANG Yue, NIE Su, WANG Xian-you. Layer-by-layered SnS2/graphene hybrid nanosheets via ball-milling as promising anode materials for lithium ion batteries [J]. Electrochimica Acta, 2018, 269:452–461.

    Article  Google Scholar 

  3. XIE Jian-jun, PEI Yi, LIU Li, GUO Sheng-ping, XIA Jing, LI Min, OUYANG Yan, ZHANG Xao-yan, WANG Xian-you. Hydrothermal synthesis of antimony oxychlorides submicron rods as anode materials for lithium-ion batteries and sodium-ion batteries [J]. Electrochimica Acta, 2017, 254: 246–254.

    Article  Google Scholar 

  4. YI Ling-guang, LIU Li, GUO Guo-xiong, CHEN Xao-ying, ZHANG Yue, YU Shu-yang, WANG Xan-you. Expanded graphite@Sn02@polyaniline composite with enhanced performance as anode materials for lithium ion batteries [J]. Electrochimica Acta, 2017, 240: 63–71.

    Article  Google Scholar 

  5. XIE Jian-jun, LIU Li, XIA Jing, ZHANG Yue, LI Min, OUYANG Yan, NIE Su, WANG Xian-you. Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries [J]. Nano-Micro Letters, 2018, 10(1): 12.

    Article  Google Scholar 

  6. YUAN D D, WANG Y X, CAO Y L, AI X P, YANG H X. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8585–8591.

    Article  Google Scholar 

  7. LI Huang-xu, CHEN Xiao-bin, JIN Ting, BAO Wei-zhai, ZHANG Zhi-an, JIAO Li-fang. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries [J]. Energy Storage Materials, 2019, 16: 383–390.

    Article  Google Scholar 

  8. JIN Ting, HAN Qing-qing, WANG Yi-jing, JIAO Li-fang. ID nanomaterials: Design, synthesis, and applications in sodium-ion batteries [J]. Small, 2018, 14(2): 1703086.

    Article  Google Scholar 

  9. WANG Xiao-jun, CAO Kang-zhe, WANG Yi-jing, JIAO Li-fang. Controllable N-doped CuCo2O4@C film as a self-supported anode for ultrastable sodium-ion batteries [J]. Small, 2017, 13(29): 1700873.

    Article  Google Scholar 

  10. HE Han-nan, GAN Qing-meng, WANG Hai-yan, XU Gui-liang, ZHANG Xiao-yi, HUANG Dan, FU Fang, TANG You-gen, AMINE K, SHAO Min-hua. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries [J]. Nano Energy, 2018, 44: 217–227.

    Article  Google Scholar 

  11. SUN Yang, GUO Shao-hua, ZHOU Hao-sheng. Exploration of advanced electrode materials for rechargeable sodium-ion batteries [J]. Advanced Energy Materials, 2018: 1800212.

    Google Scholar 

  12. LI Wei-jie, HAN Chao, WANG Wan-lin, GEBERT F, CHOU Shu-lei, LIU Hua-kun, ZHANG Xin-he, DOU Shi-xue. Commercial prospects of existing cathode materials for sodium ion storage [J]. Advanced Energy Materials, 2017, 7(24): 1700274.

    Article  Google Scholar 

  13. JIN Ting, LIU Yong-chang, LI Yang, CAO Kang-zhe, WANG Xiao-jun, JIAO Li-fang. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries [J]. Advanced Energy Materials, 2017, 7(15): 1700087.

    Article  Google Scholar 

  14. HE Han-na, HUANG Dan, PANG Wei-kong, SUN Dan, WANG Qi, TANG You-gen, JI Xiao-bo, GUO Zai-ping, WANG Hai-yan. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance [J]. Advanced Materials, 2018, 30(26): 1801013.

    Article  Google Scholar 

  15. ZHANG Zi-he, WU Di-hua, ZHANG Xu, ZHAO Xu-dong, ZHANG Hai-chang, DING Fei, XIE Zhao-jun, ZHOU Zhen. First-principles computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(25): 12752–12756.

    Article  Google Scholar 

  16. ADAMCZYK E, PRALONG V. Na2Mn3O7: A suitable electrode material for Na-ion batteries? [J]. Chemistry of Materials, 2017, 29(11): 4645–4648.

    Article  Google Scholar 

  17. ABAKUMOV A M, TSIRLIN A A, BAKAIMI I, TENDELOO G V, LAPPAS A. Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides: NaMnO2 polymorphism, redox potentials, and magnetism [J]. Chemistry of Materials, 2014, 26(10): 3306–3315.

    Article  Google Scholar 

  18. WANG Qi-di, YANG Wei, KANG Fei-yu, LI Bao-hua. Na2Mn3+0.3Mn4+ 2.7O6.85: A cathode with simultaneous cationic and anionic redox in Na-ion battery [J]. Energy Storage Materials, 2018, 14: 361–366.

    Article  Google Scholar 

  19. SU Da-wei, WANG Cheng-yin, AHN H, WANG Guo-xiu. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance [J]. Chemistry—A European Journal, 2013, 19(33): 10884–10889.

    Article  Google Scholar 

  20. SAUVAGE F, LAFFONT L, TARASCON J M, BAUDRIN E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2 [J]. Inorganic Chemistry, 2007, 46(8): 3289–3294.

    Article  Google Scholar 

  21. LIU Sheng, FAN Cheng-zhi, ZHANG Yuan, LI Cheng-hui, YOU Xiao-zeng. Low-temperature synthesis of Na2Mn5O10 for supercapacitor applications [J]. Journal of Power Sources, 2011, 196(23): 10502–10506.

    Article  Google Scholar 

  22. HOU Yan, TANG Hong-wei, LI Bao, CHANG Kun, CHANG Zhao-rong, YUAN Xiao-zi, WANG Hai-jiang. Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors [J]. Materials Chemistry and Physics, 2016, 171: 137–144.

    Article  Google Scholar 

  23. BILLAUD J, CLEMENT R J, ARMSTRONG A R, CANALES-VAZQUEZ J, ROZIER P, GREY C P, BRUCE P G β-NaMnO2: A high-performance cathode for sodium-ion batteries [J]. Journal of the American Chemical Society, 2014, 136(49): 17243–17248.

    Article  Google Scholar 

  24. WANG C H, YEH Y W, WONGITTHAROM N, WANG Yi-chen, TSENG C J, LEE S W, CHANG Wen-sheng, CHANG J K. Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes [J]. Journal of Power Sources, 2015, 274: 1016–1023.

    Article  Google Scholar 

  25. YU Jiang-ying, HONG Mao-rong, WANG Li, HUANG Kai, GUO Yu-xian. Synthesis and gas-sensing properties of P-type Na0.44MnO2 nanoribbons [J]. Materials Letters, 2016, 164: 440–443.

    Article  Google Scholar 

  26. LIU Cai, LI Jiang-gang, ZHAO Peng-xiang. Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties [J]. Journal of Nanoparticle Research, 2015, 17(3): 142.

    Article  Google Scholar 

  27. LIU Xiao, ZHANG Ning, NI Jiang-feng, GAO Li-jun. Improved electrochemical performance of sol-gel method prepared Na4Mn9O18 in aqueous hybrid Na-ion supercapacitor [J]. Journal of Solid State Electrochemistry, 2013, 17(7): 1939–1944.

    Article  Google Scholar 

  28. XU Mao-wen, NIU Yu-bin, CHEN Chuan-jun, SONG Jie, BAO Shu-juan. Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries [J]. RSC Adv, 2014, 4(72): 38140–38143.

    Article  Google Scholar 

  29. ZHAO Li-wei, NI Jiang-feng, WANG Hai-bao, GAO Li-jun. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries [J]. RSC Advances, 2013, 3(18): 6650: 6655.

    Article  Google Scholar 

  30. WANG Xu-yang, ZHOU Xu-feng, YAO Ke, ZHANG Jiang-gang, LIU Zhao-ping. A SnO2/graphene composite as a high stability electrode for lithium ion batteries [J]. Carbon, 2011, 49(1): 133–139.

    Article  Google Scholar 

  31. DAVID L, BHANDAVAT R, SINGH G MoS2/Graphene composite paper for sodium-ion battery electrodes [J]. ACS Nano, 2014, 8(2): 1759–1770.

    Article  Google Scholar 

  32. HE Xin, WANG Jun, QIU Bao, PAILLARD E, MA Chu-ze, CAO Xia, LIU Hao-dong, STAN M C, LIU Hai-dong, GALLASH T, MENG Y S, LI Jie. Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries [J]. Nano Energy, 2016, 27: 602–610.

    Article  Google Scholar 

  33. RUFFO R, FATHI R, KIM D J, JUNG Y H, MARI C M, KIM K. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte [J]. Electrochimica Acta, 2013, 108: 575–582.

    Article  Google Scholar 

  34. KIM H, KIM D J, SEO D H, YEOM M S, KANG K, KIM D K, JUNG Y Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery [J]. Chemistry of Materials, 2012, 24(6): 1205–1211.

    Article  Google Scholar 

  35. CAO Yu-liang, XIAO Li-fen, WANG Wei, CHOI D, NIE Zi-min, YU Jiang-guo, SARAF L V, YANG Zhen-guo, LIU Jun. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life [J]. Advanced Materials, 2011, 23(28): 3155–3160.

    Article  Google Scholar 

  36. LIU Qian-qian, HU Zhe, CHEN Ming-zhe, GU Qin-fen, DOU Yu-hai, SUN Zi-qi, CHOU Shu-lei, DOU Shi-xue. Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3644–3652.

    Article  Google Scholar 

  37. FERRARA C, TEALDI C, DALL'ASTA V, BUCHHOLZ D, CHAGAS L G, QUARTARONE E, BERBENNI V, PASSERINI S. High-performance Na0.44MnO2 slabs for sodium-ion batteries obtained through urea-based solution combustion synthesis [J]. Batteries, 2018, 4(1): 8.

    Article  Google Scholar 

  38. DAI Ke-hua, MAO Jing, SONG Xiang-yun, BATTAGLIA V, LIU Gao. Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method [J]. Journal of Power Sources, 2015, 285: 161–168.

    Article  Google Scholar 

  39. LUO Chao, LANGROCK A, FAN Xiu-lin, LIANG Yu-jia, WANG Chun-sheng. P2-type transition metal oxides for high performance Na-ion battery cathodes [J]. Journal of Materials Chemistry A, 2017, 5(34): 18214–18220.

    Article  Google Scholar 

  40. WU Fang, ZHANG Xiao-xiao, ZHAO Tao-lin, LI Li, XIE Man, CHEN Rui-jie. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3773–3781.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu  (刘黎).

Additional information

Foundation item: Project(51672234) supported by the National Natural Science Foundation of China; Project(1337304) supported by the Program for Innovative Research Cultivation Team in University, Ministry of Education, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ouyang, Y., Liu, L. et al. Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries. J. Cent. South Univ. 26, 1510–1520 (2019). https://doi.org/10.1007/s11771-019-4107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4107-6

Keywords

关键词

Navigation