Skip to main content
Log in

Experimental investigation on influence of loading rate on rockburst in deep circular tunnel under true-triaxial stress condition

真三轴应力条件下加载率对深部圆形隧道岩爆影响的试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions, the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specimens with d50 mm circular perforated holes, and the failure process of hole sidewall was monitored and recorded in real-time by the microcamera. The loading rates were 0.02, 0.10, and 0.50 MPa/s. The test results show that the rockburst process of hole sidewall experienced calm period, pellet ejection period, rock fragment exfoliation period and finally formed the V-shaped notch. The rockburst has a time lag and vertical stress is high when the rockburst occurs. The vertical stress at the initial failure of the hole sidewall increases with loading rate. During the same period after initial failure, the rockburst severity of hole sidewalls increased significantly with increasing loading rate. When the vertical stress is constant and maintains a high stress level, the rockburst of hole sidewall under low loading rate is more serious than that under high loading rate. With increasing loading rate, the quality of rock fragments produced by the rockburst decreases, and the fractal dimension of rock fragments increases.

摘要

为了研究加载率对真三轴应力条件下圆形隧道围岩岩爆的影响, 对含有d50 mm 圆形贯穿孔洞的100 mm×100 mm×100 mm 立方体砂岩试样开展了真三轴试验, 采用微型摄像机实时监测并记录洞壁的破坏过程。加载率分别为0.02, 0.10 和0.50 MPa/s。试验结果表明, 岩爆过程经历了平静期、颗粒弹射期、岩片剥落期, 最终形成V 形槽。岩爆具有一定的时滞性, 发生岩爆时垂直应力较高。洞壁初始破坏时的垂直应力随着加载率的增加而增加。在初始破坏之后的同一时间段内, 岩爆的剧烈和严重程度随着加载率的增加而增强。当垂直应力恒定并保持在较高的应力水平时, 低加载率下洞壁的岩爆破坏程度要比高加载率下的严重。随着加载率的增加, 岩爆产生的岩片的质量减小, 岩片的分形维数增大。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CAI Ming. Principles of rock support in burst-prone ground [J]. Tunnelling and Underground Space Technology, 2013, 36: 46–56. DOI: https://doi.org/10.1016/j.tust.2013.02.003.

    Article  Google Scholar 

  2. LI Xi-bing. Rock dynamic: Fundmentals and applications [M]. Beijing, China: Science Press, 2014. (in Chinese)

    Google Scholar 

  3. LINKOV A M. Rockbursts and the instability of rock masses [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33: 727–732. DOI: https://doi.org/10.1016/0148-9062(96)00021-6.

    Article  Google Scholar 

  4. MAZAIRA A, KONICEK P. Intense rockburst impacts in deep underground construction and their prevention [J]. Canadian Geotechnique Journal, 2015, 52(10): 1426–1439. DOI: https://doi.org/10.1139/cgj-2014-0359.

    Article  Google Scholar 

  5. JIANG Bang-you, GU Shi-tan, WANG Lian-guo, ZHANG Guang-chao, LI Wen-shuai. Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress [J]. Journal of Central South University, 2019, 26(4): 984–999. DOI: https://doi.org/10.1007/s11771-019-4065-z.

    Article  Google Scholar 

  6. WU Chen, GONG Feng-qiang, LUO Yong. A new quantitative method to identify the crack damage stress of rock using AE detection parameters [J]. Bulletin of Engineering Geology and the Environment, 2020. DOI: https://doi.org/10.1007/s10064-020-01932-6.

  7. DIEDERICHS M S. The 2003 Canadian geotechnical colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling [J]. Canadian Geotechnical Journal, 2007, 44(9): 1082–1116. DOI: https://doi.org/10.1139/T07-033.

    Article  Google Scholar 

  8. MITELMAN A, ELMO D. Analysis of tunnel support design to withstand spalling induced by blasting [J]. Tunnelling and Underground Space Technology, 2016, 51, 354–361. DOI: https://doi.org/10.1016/j.tust.2015.10.006.

    Article  Google Scholar 

  9. ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts [J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59–65. DOI: https://doi.org/10.1016/0886-7798(94)90010-8.

    Article  Google Scholar 

  10. GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng. Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104081. DOI: https://doi.org/10.1016/j.ijrmms.2019.104081.

    Article  Google Scholar 

  11. LUO Yong, GONG Feng-qiang, LI Xi-bing, WANG Shan-yong. Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel [J]. Journal of Central South University, 2020, 27(3): 891–910. DOI: https://doi.org/10.1007/s11771-020-4339-5.

    Article  Google Scholar 

  12. LUO Yong. Influence of water on mechanical behavior of surrounding rock in hard-rock tunnels: An experimental simulation [J]. Engineering Geology, 2020, 277: 105816. DOI: https://doi.org/10.1016/j.enggeo.2020.105816.

    Article  Google Scholar 

  13. KAISER P K, CAI Ming. Design of rock support system under rockburst condition [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(3): 215–227. DOI: CNKI:SUN:JRMG.0.2012-03-005.

    Article  Google Scholar 

  14. MARTIN C D, READ R S, MARTINO J B. Observations of brittle failure around a circular test tunnel [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(7): 1065–1073. DOI: https://doi.org/10.1016/S1365-1609(97)90200-8.

    Article  Google Scholar 

  15. ZHANG Chuan-qing, FENG Xia-ting, ZHOU Hui, QIU Shi-li, WU Wen-ping. A top pilot tunnel preconditioning method for the prevention of extremely intense Rockbursts in deep tunnels excavated by TBMs [J]. Rock Mechanics and Rock Engineering, 2012, 45: 289–309. DOI: https://doi.org/10.1007/s00603-011-0199-5.

    Article  Google Scholar 

  16. QIU Jia-dong, LI Di-yuan, LI Xi-bing, ZHU Quan-qi. Numerical investigation on the stress evolution and failure behavior for deep roadway under blasting disturbance [J]. Soil Dynamics and Earthquake Engineering, 2020, 137: 106278. DOI: https://doi.org/10.1016/j.soildyn.2020.106278.

    Article  Google Scholar 

  17. SALAMON M D G. Stability, instability and design of pillar workings [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1970, 7(6): 613–631. DOI: https://doi.org/10.1016/0148-9062(70)90022-7.

    Article  Google Scholar 

  18. SINGH S P. The influence of rock properties on the occurrence and control of rockbursts [J]. Mining Science and Technology, 1987, 5(1): 11–18. DOI: https://doi.org/10.1016/S0167-9031(87)90854-1.

    Article  Google Scholar 

  19. SINGH S P. Classification of mine workings according to their rockburst proneness [J]. Mining Science and Technology, 1989, 8(3): 253–262. DOI: https://doi.org/10.1016/S0167-9031(89)90404-0.

    Article  Google Scholar 

  20. LI Xi-bing, GONG Feng-qiang, ZHAO Jian, GAO Ke, YIN Tu-bing. Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251–260. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201002007.htm. (in Chinese)

    Google Scholar 

  21. GONG Feng-qiang, LI Xi-bing, LIU Xi-ling, ZHAO Jian. Experimental study of dynamic characteristics of sandstone under one-dimensional coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2076–2085. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201010019.htm. (in Chinese)

    Google Scholar 

  22. XU Ying-nian, XU Wen-sheng, WANG Yuan-han, THAM L G, TSUI Y, LEE P K K. Simulation testing and mechanism studies on rockburst [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1462–1466. DOI: https://doi.org/10.3321/j.issn:1000-6915.2002.10.006. (in Chinese)

    Google Scholar 

  23. HE Man-chao, MIAO Jin-li, FENG Ji-li. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286–298. DOI: https://doi.org/10.1016/j.ijrmms.2009.09.003.

    Article  Google Scholar 

  24. HE Man-chao, JIA Xue-na, COLI M, LIVI E, LUIS S. Experimental study of rockbursts in underground quarrying of Carrara marble [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 1–8. DOI: https://doi.org/10.1016/j.ijrmms.2012.02.006.

    Article  Google Scholar 

  25. DU Kun, TAO Ming, LI Xi-bing, ZHOU Jian. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437–345. DOI: https://doi.org/10.1007/s00603-016-0990-4.

    Article  Google Scholar 

  26. LI Xi-bing, GONG Feng-qiang, TAO Ming, DONG Long-jun, DU Kun, MA Chun-de, YIN Tu-bing. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  27. LI Xi-bing, FENG Fan, LI Di-yuan, DU Kun, RANJITH P G, ROSTAMI J. Failure characteristics of granite influenced by sample height-to-width ratios and intermediate principal stress under true-triaxial unloading conditions [J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1321–1345. DOI: https://doi.org/10.1007/s00603-018-1414-4.

    Article  Google Scholar 

  28. SI Xue-feng, GONG Feng-qiang. Strength-weakening effect and shear-tension failure mode transformation mechanism of rockburst for fine-grained granite under triaxial unloading compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104347. DOI: https://doi.org/10.1016/j.ijrmms.2020.104347.

    Article  Google Scholar 

  29. SU Guo-shao, JIANG Jian-qing, ZHAI Shao-bin, ZHANG Guang-liang. Influence of tunnel axis stress on strainburst: An experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50: 1551–1567. DOI: https://doi.org/10.1007/s00603-017-1181-7.

    Article  Google Scholar 

  30. SU Guo-shao, SHI Yan-jiong, FENG Xia-ting, JIANG Jian-qing, ZHANG Jie, JIANG Quan. True-triaxial experimental study of the evolutionary features of the acoustic emissions and sounds of rockburst processes [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 375–389. DOI: https://doi.org/10.1007/s00603-017-1344-6.

    Article  Google Scholar 

  31. ZHAO Xing-guang, CAI Ming. Influence of specimen height-to-width ratio on the strainburst characteristics of Tianhu granite under true-triaxial unloading conditions [J]. Canadian Geotechnique Journal, 2015, 52(7): 890–902. DOI: https://doi.org/10.1139/cgj-2014-0355.

    Article  Google Scholar 

  32. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1459–1474. DOI: https://doi.org/10.1007/s00603-018-1660-5.

    Article  Google Scholar 

  33. SI Xue-feng, HUANG Lin-qi, LI Xi-bing, MA Chun-de, GONG Feng-qiang. Experimental investigation of spalling failure of D-shaped tunnel under three-dimensional high-stress conditions in hard rock [J]. Rock Mechanics and Rock Engineering, 2020. DOI: https://doi.org/10.1007/s00603-020-02280-3.

  34. ZHOU Hui, LU Jing-jing, HU Shan-chao, ZHANG Chuan-qing, XU Rong-chao, MENG Fan-zhen. Influence of curvature radius of tunnels excavation section on slabbing of hard brittle rockmass under high stress [J]. Rock and Soil Mechanics, 2016, 37(1): 140–146. DOI: https://doi.org/10.16285/j.rsm.2016.01.017. (in Chinese)

    Google Scholar 

  35. LI Xi-bing, LOK T S, ZHAO Jian. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: https://doi.org/10.1007/s00603-004-0030-7.

    Article  Google Scholar 

  36. OKUBO S, FUKUI K, QI Qing-xin. Uniaxial compression and tension tests of anthracite and loading rate dependence of peak strength [J]. International Journal of Coal Geology, 2006, 68(3): 196–204. DOI: https://doi.org/10.1016/j.coal.2006.02.004.

    Article  Google Scholar 

  37. ZHANG Qian-bing, ZHAO Jian. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: https://doi.org/10.1007/s00603-013-0463-y.

    Article  Google Scholar 

  38. ZHAO Jian, LI Hai-bo, WU Mian-ba, LI Ting-jie. Dynamic uniaxial compression tests on a granite [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(2): 273–277. DOI: https://doi.org/10.1016/S0148-9062(99)00008-X.

    Article  Google Scholar 

  39. BAZANT Z P, BAI Shang-ping, GETTU R. Fracture of rock: Effect of loading rate [J]. Engineering Fracture Mechanics, 1993, 45: 393–398. DOI: https://doi.org/10.1016/0013-7944(93)90024-M.

    Article  Google Scholar 

  40. CAI Ming, KAISER P K, SUORINENI F, SU K. A study on the dynamic behavior of the Meuse/haute-Marne argillite [J]. Physics and Chemistry of the Earth, 2007, 32: 907–916. DOI: https://doi.org/10.1016/j.pce.2006.03.007.

    Article  Google Scholar 

  41. LAJTAI E Z, DUNCAN S E J, CARTER B J. The effect of strain rate on rock strength [J]. Rock Mechanics and Rock Engineering, 1991, 24(2): 99–109. DOI: https://doi.org/10.1007/BF01032501.

    Article  Google Scholar 

  42. MAHMUTOGLU Y. The effects of strain rate and saturation on a micro-cracked marble [J]. Engineering Geology, 2006, 82(3): 137–144. DOI: https://doi.org/10.1016/j.enggeo.2005.09.001.

    Article  Google Scholar 

  43. GONG Feng-qiang, LUO Yong, LI Xi-bing, SI Xue-feng, TAO Ming. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels [J]. Tunnelling and Underground Space Technology, 2018, 81: 413–427. DOI: https://doi.org/10.1016/j.tust.2018.07.035.

    Article  Google Scholar 

  44. FENG Xia-ting, HAIMSON B, LI Xiao-chun, CHANG Chan-dong, MA Xiao-dong, ZHANG Xi-wei, INGRAHAM M, SUZUKI K. ISRM Suggested Method: determining deformation and failure characteristics of rocks subjected to true triaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 2011–2020. DOI: https://doi.org/10.1007/s00603-019-01782-z.

    Article  Google Scholar 

  45. GONG Feng-qiang, YAN Jing-yi, LI Xi-bing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993–2014. DOI: https://doi.org/10.13722/j.cnki.jrme.2018.0232. (in Chinese)

    Google Scholar 

  46. LI Xi-bing, WANG Shao-feng, WANG Shan-yong. Experimental investigation of the influence of confining stress on hard rock fragmentation using a conical pick [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 255–277. DOI: https://doi.org/10.1007/s00603-017-1309-9.

    Article  MathSciNet  Google Scholar 

  47. SUN Ye, TAN Chen-xuan. An analysis of present-day regional tectonic stress field and crustal movement trend in China [J]. Journal of Geomechanics, 1995, 1(3): 1–12. http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX503.000.htm. (in Chinese)

    Google Scholar 

  48. LUO Yong, GONG Feng-qiang, LIU Dong-qiao, WANG Shan-yong, SI Xue-feng. Experimental simulation analysis of the process and failure characteristics of spalling in D-shaped tunnels under true-triaxial loading conditions [J]. Tunnelling and Underground Space Technology, 2019, 90: 42–61. DOI: https://doi.org/10.1016/j.tust.2019.04.020.

    Article  Google Scholar 

  49. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Dynamic triaxial compression tests on sandstone at high strain rates and low confning pressures with split Hopkinson pressure bar [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 211–219. DOI: https://doi.org/10.1016/j.ijrmms.2018.12.005.

    Article  Google Scholar 

  50. SI Xue-feng, GONG Feng-qiang, LI Xi-bing, WANG Shan-yong, LUO Song. Dynamic Mohr-Coulomb and Hoek-Brown strength criteria of sandstone at high strain rate [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 48–59. DOI: https://doi.org/10.1016/j.ijrmms.2018.12.013.

    Article  Google Scholar 

  51. TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations [J]. Soil Science Society of America Journal, 1992, 56: 362–369. DOI: https://doi.org/10.2136/sssaj1992.03615995005600020005x.

    Article  Google Scholar 

  52. WANG Lei, XIE Guang-xiang. Influence of mining velocity on dynamic disasters in the coal and rock mass at a fully mechanized mining face [J]. Journal of China University of Mining and Technology, 2010, 39(1): 70–74. DOI: https://doi.org/10.1016/S1876-3804(11)60004-9. (in Chinese)

    Google Scholar 

  53. LI Hai-tao, JIANG Chun-xiang, JIANG Yao-dong, WANG Hong-wei, LIU Hua-bo. Mechanical behavior and mechanism analysis of coal samples based on loading rate effect [J]. Journal of China University of Mining and Technology, 2015, 44(3): 430–436. http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201503006.htm. (in Chinese)

    Google Scholar 

  54. KIDYBI N A. Bursting liability indices of coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 295–304. DOI: https://doi.org/10.1016/0148-9062(81)91194-3.

    Article  Google Scholar 

  55. WANG Jin-an, JIAO Shen-hua, XIE Guang-xiang. Study on influence of mining rate on stress environment in surrounding rock of mechanized top caving mining face [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1118–1124. DOI: https://doi.org/10.3321/j.issn:1000-6915.2006.06.007. (in Chinese)

    Google Scholar 

  56. GUO Nian-bo, WANG Ying-qi, ZHENG You-lei, GUI Bing, WANG Zhi-feng. Control research on advance velocity and micro-seimic events [J]. Safety in Coal Mines, 2012, 43(11): 201–203. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MKAQ201211063.htm. (in Chinese)

    Google Scholar 

  57. SHI Qiang, PAN Yi-shan, LI Ying-jie. The typical cases and analysis of rockburst in China [J]. Coal Minging Technology, 2005, 10(2): 13–17. http://en.cnki.com.cn/Article_en/CJFDTotal-MKKC200502004.htm. (in Chinese)

    Google Scholar 

  58. XIE Guang-xiang, CHANG Ju-cai, HUA Xin-zhu. Influence of mining velocity on mechanical characteristics of surrounding rock in fully mechanized top-coal caving face [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 963–967. DOI: https://doi.org/10.1016/S1874-8651(08)60066-6. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SI Xue-feng provided the methodology, conducted the tests, wrote original draft, and revised and edited the manuscript. HUANG Lin-qi revised and edited the manuscript. GONG Feng-qiang provided the idea and methodology, and revised and edited the manuscript. LIU Xi-ling revised and edited the manuscript. LI Xi-bing revised the manuscript, and provided financial support.

Corresponding author

Correspondence to Xi-bing Li  (李夕兵).

Additional information

Conflict of interest

SI Xue-feng, HUANG Lin-qi, GONG Feng-qiang, LIU Xi-ling and LI Xi-bing declare that they have no conflict of interest.

Foundation item: Projects(11972378, 41630642) supported by the National Natural Science Foundation of China; Project(2019zzts310) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Xf., Huang, Lq., Gong, Fq. et al. Experimental investigation on influence of loading rate on rockburst in deep circular tunnel under true-triaxial stress condition. J. Cent. South Univ. Technol. 27, 2914–2929 (2020). https://doi.org/10.1007/s11771-020-4518-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4518-4

Key words

关键词

Navigation