Skip to main content
Log in

Synthesis of a novel hexagonal porous TT-Nb2O5 via solid state reaction for high-performance lithium ion battery anodes

六方多孔 TT-Nb2O5 微米片的固相制备与储锂性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Hexagonal porous Nb2O5 was synthesized for the first time via a facile solid-state reaction. The structure and electrochemical properties have been optimized through tuning heating temperature. X-ray diffraction results indicate that pseudo hexagonal Nb2O5 (TT-Nb2O5) and orthorhombic Nb2O5 have been synthesized at different temperatures. Hexagonal sheet and porous structure of Nb2O5 were characterized by scanning electron microscopy and N2-adsorption-desorption isotherms. The as-prepared TT-Nb2O5 (heated at 600 °C) shows the best performance with a remarkable charge capacity of 178 mA·h/g at 0.2C, which is higher than that of T-Nb2O5. Even at 20C, TT-Nb2O5 offers unprecedented rate capability up to 86 mA·h/g. The high rate capacity is due to pseudocapacitive Li+ intercalation mechanism of TT-Nb2O5. The reported results demonstrate that Nb2O5 with good crystal structure and high specific surface area is a powerful composite design for high-rate and safe anode materials.

摘要

本文通过固相反应首次合成了一种六方多孔 Nb2O5 材料. 通过优化热处理温度调节 Nb2O5 材料的结构和电化学性能. XRD 结果表明, 在不同温度下可以合成伪六方晶系与正交晶系 Nb2O5; SEM 结果表明, 所合成的 Nb2O5 材料具有正六边形貌与多孔结构. 将该材料用作锂离子电池负极材料时, 在 600 °C制备的伪六方结构 Nb2O5(TT-Nb2O5)表现出最优的电化学性能. 0.2C 电流密度下, 其可逆比容量为 178 mA·h/g; 当电流密度提高到 20C 时, 可逆比容量仍有 86 mA·h/g. 优异的电化学性能得益于 Nb2O5 的赝电容式锂离子嵌入机制, 通过晶体结构与比表面积调控显著提高 Nb2O5 的综合电化学性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GOODENOUGH J, PARK K. The Li-ion rechargeable battery: A perspective [J]. Journal of the American Chemical Society, 2013, 135: 1167–1176. DOI: https://doi.org/10.1021/ja3091438.

    Article  Google Scholar 

  2. GUAN Pei-yuan, ZHOU Lu, YU Zhen-lu, SUN Yuan-dong, LIU Yun-jian, WU Fei-xiang, JIANG Yi-feng, CHU De-wei. Recent progress of surface coating on cathode materials for high performance lithium-ion batteries [J]. Journal of Energy Chemistry, 2020, 43: 220–235. DOI: https://doi.org/10.1016/j.jechem.2019.08.022.

    Article  Google Scholar 

  3. ZHENG Jun-chao, YANG Zhuo, DAI Alvin, TANG Lin-bo, WEI Han-xin, LI Yun-jiao, HE Zhen-jiang, LU jun. Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design [J]. Small, 2019, 15(50): 1904854. DOI: https://doi.org/10.1002/sm11.201904854.

    Article  Google Scholar 

  4. QU Xing-yu, YU Zhen-lu, RUAN Ding-shan, DOU Ai-chun, SU Ming-ru, ZHOU Yu, LIU Yun-jian, CHU De-wei, Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(15): 5819–5830. DOI: https://doi.org/10.1021/acssuschemeng.9b05539.

    Article  Google Scholar 

  5. ZHOU Zhi-wei, LUO Zi-yan, HE Zhen-jiang, ZHENG Jun-chao, LI Yun-jiao. A novel hollow porous structure designed for Na0.44Mn2/3Co1/6Ni1/6O2 cathode material of sodium-ion batteries [J]. Journal of Power Sources, 2020, 479: 228788. DOI: https://doi.org/10.1016/j.jpowsour.2020.228788.

    Article  Google Scholar 

  6. WU Ling, HU Yong, ZHANG Xiao-ping, LIU Jie-qun, ZHU Xing, ZHONG Sheng-kui. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries [J]. Journal of Power Sources, 2018, 374: 40–47. DOI: https://doi.org/10.1016/j.jpowsour.2017.11.029.

    Article  Google Scholar 

  7. LIU Yi-jian, GUO Hao, ZHANG Bao-hua, WEN Gong-yu, VAJTAI R, WU Ling, AJAYAN P, WANG Liang. Sustainable synthesis of N-doped hollow porous carbon spheres via a spray-drying method for lithium-sulfur storage with ultralong cycle life [J]. Batteries & Supercaps, 2020, DOI: https://doi.org/10.1002/batt.202000143.

    Google Scholar 

  8. WANG Gang, CHEN Yuan-hua, CHEN Chao, KANG Xiong-wu, YANG Cheng-hao, WANG Fei, LIU Yong, XIONG Xun-hui. Self-stabilized and strong adhesive supramolecular polymer protective layer enables ultrahigh rate and large capacity lithium metal anode [J]. Angewandte Chemie Inthernational Edition, 2020, 59: 2055–2060. DOI: https://doi.org/10.1002/anie.201913351.

    Article  Google Scholar 

  9. ZHENG Sheng-quan, DOU Ai-chun, SU Ming-ru, LIU Yun-jian. Influence of Nb doping on electrochemical performance of nanostructured cation disordered Li1+x/100Ni1/2−x/100Ti1/2−x/100Nbx/100O2 composites cathode for Li-ion batteries [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(1): 452–459. DOI: https://doi.org/10.1166/jnn.2020.16884.

    Article  Google Scholar 

  10. FANG Rui, MIAO Chang, MOU Hao-yi, XIAO Wei. Facile synthesis of Si@TiO2@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries [J]. Journal of Alloys and Compounds, 2020, 818: 152884. DOI: https://doi.org/10.1016/j.jallcom.2019.152884.

    Article  Google Scholar 

  11. WU Ling, ZHENG Jie, WANG Liang, XIONG Xun-hui, SHAO Yan-yan, WANG Gang, WANG Jeng-han, ZHONG Sheng-kui, WU Ming-hong. PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries [J]. Angew Chem Int Ed Engl, 2018, 58(3): 811–815. DOI: https://doi.org/10.1002/ange.201811784.

    Article  Google Scholar 

  12. YU Zhen-lu, QU Xing-yu, WAN Tao, DOU Ai-chun, ZHOU Yu, PENG Xiao-qi, SU Ming-ru, LIU Yun-jian, CHU De-wei. Synthesis and mechanism of high structural stability of nickel-rich cathode materials by adjusting Li-excess [J]. ACS Appl Mater Interfaces, 2020, 12(36): 40393–40403. DOI: https://doi.org/10.1021/acsami.0c12541.

    Article  Google Scholar 

  13. AUGUSTYN V, COME J, LOWE M, KIM J, TABERNA P, TOLERT S, ABRUNA H, SIMON P, DUNN B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance [J]. Nature Matrials, 2013, 12: 518–522. DOI: https://doi.org/10.1038/nmat3601.

    Article  Google Scholar 

  14. YAN Li-tao, RUI Xian-hong, CHEN Gen, XU Wei-chuan, ZOU Gui-fu, LUO Hong-mei. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage [J]. Nanoscale, 2016, 8: 8443–8465. DOI: https://doi.org/10.1039/C6NR01340F.

    Article  Google Scholar 

  15. KODAMA R, TERADA Y, NAKAI I, KOMABA S, KUMAGAI N. Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 2006, 153: 583–588. DOI: https://doi.org/10.1149/1.2163788.

    Article  Google Scholar 

  16. WANG Xu, YAN Chao-yi, YAN Jian, SUMBOJA A, LEE P. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device [J]. Nano Energy, 2015, 11: 765–772. DOI: https://doi.org/10.1016/j.nanoen.2014.11.020.

    Article  Google Scholar 

  17. LIU Xiao-di, LIU Guang-yin, CHEN Hao, MA Jian-min, ZHANG Rui-xue. Facile synthesis of Nb2O5 nanobelts assembled from nanorods and their applications in lithium ion batteries [J]. Journal of Physics and Chemistry of Solids, 2017, 111: 8–11. DOI: https://doi.org/10.1016/j.jpcs.2017.07.007.

    Article  Google Scholar 

  18. WANG Hong-xun, ZHANG Bao, ZENG Xian-qing, YAN Li-jing, ZHENG Jun-chao, LING Min, HOU Yang, LU Ying-ying, LIANG Cheng-du. 3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries [J]. Journal of Power Sources, 2020, 473: 228588. DOI: https://doi.org/10.1016/j.jpowsour.2020.228588.

    Article  Google Scholar 

  19. CHEONG J, JUNG J, YOUN D, KIM C, YU S, CHO S, YOON K, KIM I. Mesoporous orthorhombic Nb2O5 nanofibers as pseudocapacitive electrodes with ultra-stable Li storage characteristics [J]. Journal of Power Sources, 2017, 360: 434–442. DOI: https://doi.org/10.1016/j.jpowsour.2017.06.030.

    Article  Google Scholar 

  20. CHEONG J, YOUN D, KIM C, JUNG J, OGATA A, JIN G. Ag-coated one-dimensional orthorhombic Nb2O5 fibers as high performance electrodes for lithium storage [J]. Electrochimica Acta, 2018, 269: 388–396. DOI: https://doi.org/10.1016/j.electacta.2018.03.028

    Article  Google Scholar 

  21. LIU Guang-yin, JIN Bo, BAO Ke-yan, XIE Hai-quan, GUO Jia-li, JI Xiao-guang, ZHANG Rui-xue, JIANG Qing. Facile synthesis of porous Nb2O5 microspheres as anodes for lithium-ion batteries [J]. International Journal of Hydrogen Energy, 2017, 42: 6065–6071. DOI: https://doi.org/10.1016/j.ijhydene.2016.11.126.

    Article  Google Scholar 

  22. LOU Shuai-feng, CHENG Xin-qun, WANG Long, GAO Jin-long, LI Qin, MA Yun-lin, GAO Yun-zhi, ZUO Peng-jian, DU Chun-yu, YIN Ge-ping. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance [J]. Journal of Power Sources, 2017, 361: 80–86. DOI: https://doi.org/10.1016/j.jpowsour.2017.06.023.

    Article  Google Scholar 

  23. LU Shi-jie, WANG Zhi-teng, ZHANG Xia-hui, HE Zhen-jiang, TONG Hui, LI Yun-jiao, ZHENG Jun-chao. In situ-formed hollow cobalt sulfide wrapped by reduced graphene oxide as an anode for high-performance lithium-ion batteries [J]. ACS Appl Mater Interfaces, 2020, 12(2): 2671–2678. DOI: https://doi.org/10.1021/acsami.9b18931.

    Article  Google Scholar 

  24. HUO Yi-feng, QIN Ning, LIAO Cheng-zhu, FENG Hui-fen, GU Ying-ying, CHENG Hua. Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes [J]. Journal of Central South University, 2019, 26(6): 1416–1425. DOI: https://doi.org/10.1007/s11771-019-4097-4.

    Article  Google Scholar 

  25. LIU Yu-bin, LIN Li-wei, ZHANG Wei-feng, WEI Ming-deng. Heterogeneous TiO2@Nb2O5 composite as a high-performance anode for lithium-ion batteries [J]. Scientific Reports, 2017, 7: 7204. DOI: https://doi.org/10.1038/s41598-017-07562-5.

    Article  Google Scholar 

  26. LIU Xiao-di, DUAN Xiao-chuan, PENG Peng, ZHENG Wen-jun. Hydrothermal synthesis of copper selenides with controllable phases and morphologies from an ionic liquid precursor [J]. Nanoscale, 2011, 3: 5090–5095. DOI: https://doi.org/10.1039/C1NR10833F.

    Article  Google Scholar 

  27. CAO Dun-ping, YAO Zhen-guo, LIU Jian-jun, ZHANG Jin-cang, LI Chi-lin. H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries [J]. Energy Storage Materials, 2018, 11: 152–160. DOI: https://doi.org/10.1016/j.ensm.2017.10.005.

    Article  Google Scholar 

  28. VIET A, REDDY M, JOSE R, CHOWDARI B, RAMAKRISHNA S. Nb2O5 photoelectrodes for dye-sensitized solar cells: Choice of the polymorph [J]. The Journal of Physical Chemistry C, 2010, 114(49): 21795–21800. DOI: https://doi.org/10.1021/jp106515k.

    Article  Google Scholar 

  29. YUN Si-ning, SI Yi-ming, SHI Jing, ZHANG Tai-hong, HOU Yu-zhi, LIU Hang, MENG Sheng, HAGFELDT A. Electronic structures and catalytic activities of niobium oxides as electrocatalysts in liquid-junction photovoltaic devices [J]. Solar RRL, 2020, 4(3): 1900430. DOI: https://doi.org/10.1002/solr.201900430.

    Article  Google Scholar 

  30. KIM K, KIM M, CHA P, KANG S, KIM J. Structural modification of self-organized nanoporous niobium oxide via hydrogen treatment [J]. Chemistry of Materials, 2016, 28(5): 1453–1461. DOI: https://doi.org/10.1021/acs.chemmater.5b04845.

    Article  Google Scholar 

  31. KONG Ling-ping, ZHANG Chuan-fang, WANG Ji-tong, QIAO Wen-ming, LING Li-cheng, LONG Dong-hui. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor [J]. ACS Nano, 2015, 9(11): 11200–11208. DOI: https://doi.org/10.1021/acsnano.5b04737.

    Article  Google Scholar 

  32. YANG Chao, YU Shu, LIN Chun-fu, LV Fan, WU Shun-qing, YANG Yong, WANG Wei, ZHU Zi-zhong, LI Jian-bao, WANG Ning, GUO Shao-jun. Cr0.5Nb24.5O62 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage [J]. ACS Nano, 2017, 11(4): 4217–4224. DOI: https://doi.org/10.1021/acsnano.7b01163.

    Article  Google Scholar 

  33. HE Han-na, SUN Dan, TANG You-gen, WANG Hai-yan, SHAO Min-hua. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries [J]. Energy Storage Materials, 2019, 23: 233–251. DOI: https://doi.org/10.1016/j.ensm.2019.05.008.

    Article  Google Scholar 

  34. LUKATSKAYA M, DUNN B, GOGOTSI Y. Multidimensional materials and device architectures for future hybrid energy storage [J]. Nature Communications, 2016, 7: 12647. DOI: https://doi.org/10.1038/ncomms12647.

    Article  Google Scholar 

  35. RAUDA I, AUGUSTYN V, DUNN B, TOLBERT S. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials [J]. Accounts of Chemical Research, 2013, 46(5): 1113–1124. DOI: https://doi.org/10.1021/ar300167h.

    Article  Google Scholar 

  36. WANG Ru-tao, LANG Jun-wei, ZHANG Peng, LIN Zong-yuan, YAN Xing-bin. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high performance hybrid supercapacitors [J]. Advanced Functional Materials, 2015, 25(15): 2270–2278. DOI: https://doi.org/10.1002/adfm.201404472.

    Article  Google Scholar 

  37. LI Guang-chao, YIN Zhou-lan, GUO Hua-jun, WANG Zhi-xing, YAN Guo-chun, YANG Zhe-wei, LIU Yong, JI Xiao-bo, WANG Jie-xi. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium-ion hybrid supercapacitor [J]. Advanced Energy Materials, 2019, 9(2): 1802878. DOI: https://doi.org/10.1002/aenm.201802878.

    Article  Google Scholar 

  38. YANG Shu-qi, WANG Peng-bo, WEI Han-xin, TANG Lin-bo, ZHANG Xia-hui, HE Zhen-jiang, LI Yun-jiao, TONG Hui, ZHENG Jun-chao. Li4V2Mn(PO4)4 stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries [J]. Nano Energy, 2019, 63: 103889. DOI: https://doi.org/10.1016/j.nanoen.2019.103889.

    Article  Google Scholar 

  39. TAN Yu-ming, CHEN Xian-hong, ZHU Yi-rong, CHEN Li-juan. Synthesis of spherical tremella-like Sb2O3 structures derived from metal-organic framworks and its lithium storage properties [J]. Journal of Central South University, 2019, 26: 1469–1480. DOI: https://doi.org/10.1007/s11771-019-4103-x.

    Article  Google Scholar 

  40. ZHOU Xiao-zhong, LU He-jie, TANG Xing-chang, ZENG Ya-ping, YU Xin. Facile synthesis of Sb@Sb2O3/reduced graphene oxide composite with superior Lithium-storage performance [J]. Journal of Central South University, 2019, 26(6): 1493–1502. DOI: https://doi.org/10.1007/s11771-019-4105-8.

    Article  Google Scholar 

  41. FANG Rui, XIAO Wei, MIAO Chang, MEI Ping, YAN Xue-ming, ZHANG Yan, JIANG Yu. Improved lithium storage performance of pomegranate-like Si@NC/rGO composite anodes by facile in-situ nitrogen doped carbon coating and freeze drying processes [J]. Journal of Alloys and Compounds, 2020, 834: 155230. DOI: https://doi.org/10.1016/j.jallcom.2020.155230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIU Yun-jian provided the concept and edited the draft of manuscript. ZHOU Yu conducted the literature review, and wrote the first draft of the manuscript, and replied to reviewers’ comments. LIU Ke, ZHOU Yue and NI Jia-hua provided the measured dataand analyzed the measured data. DOU Ai-chun and SU Ming-ru provided resources and validation. All authors revised the final version.

Corresponding author

Correspondence to Yun-jian Liu  (刘云建).

Ethics declarations

ZHOU Yu, LIU Ke, ZHOU Yue, NI Jia-hua, DOU Ai-chun, SU Ming-ru, LIU Yun-jian declare that they have no conflict of interest.

Additional information

Foundation item: Projects(51974137, 51774150) supported by the National Natural Science Foundation of China; Project(2020M671361) supported by China Postdoctoral Science Foundation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Liu, K., Zhou, Y. et al. Synthesis of a novel hexagonal porous TT-Nb2O5 via solid state reaction for high-performance lithium ion battery anodes. J. Cent. South Univ. 27, 3625–3636 (2020). https://doi.org/10.1007/s11771-020-4570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4570-0

Key words

关键词

Navigation