Skip to main content
Log in

Recovery of zinc from electric arc furnace dust by alkaline pressure leaching using iron as a reductant

碱性加压浸出体系中铁粉还原浸出电弧炉烟尘中锌的工艺研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To recover zinc from electric arc furnace (EAF) dust, a process of primary normal pressure leaching and secondary alkaline pressure leaching is proposed. First, under the alkaline pressure leaching system, the experiment of pure zinc ferrite being reduced by iron powder was carried out. Under the optimal reduction conditions (i.e., temperature of 260 °C, NaOH concentration of 6 mol/L, liquid-to-solid ratio of 50 mL/g, and a 5-fold excess of iron powder), 89% of zinc was extracted. The iron in the reduced residue exists as a magnetite phase. Subsequently, the normal pressure leaching experiment was carried out with EAF dust as raw material, and 66% zinc was leached. The main phase of zinc in normal leaching residue was determined to be zinc ferrite. Then, the normal leaching residue was reduced by iron powder under the alkaline pressure leaching system, and 66.5% of zinc was extracted. After the two-stage leaching process, the leaching rate of zinc in EAF dust can achieve 88.7%. The alkaline pressure leaching solution can be returned as the normal pressure leaching solution, and the magnetite in the alkaline pressure leaching residue can be recovered by magnetic separation.

摘要

为了从电弧炉烟尘中回收锌, 本文提出了一种常压浸出与碱性加压浸出结合的工艺. 首先, 在 碱性加压浸出体系下, 进行了铁粉还原纯铁酸锌的实验, 确定了温度260 °C 、 NaOH浓度6 mol/L、 液 固比50 mL/g、 铁粉过量系数为5 的最佳还原条件, 在此条件下锌的浸出率为89%, 还原渣中铁以磁铁 矿物相存在. 随后, 以电弧炉烟尘为原料, 进行了常压浸出实验, 实现了原料中66%锌的浸出, 并确 定了常压浸出渣中锌的主要物相为铁酸锌. 接着, 对常压浸出渣进行了碱性加压浸出体系铁粉还原浸 出, 实现了常压浸出渣中66.5%的锌被浸出. 两段浸出可实现电弧炉烟尘中88.7%的锌进入浸出液中, 同时碱性加压浸出液可返回作为常压浸出液, 并通过磁选的方法回收中碱性加压浸出渣的磁铁矿.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PANG Wen-jie, ZENG Zi-gao, LIU Wei-ping, XIAO Song-wen. Present situation of EAF dust treatment technology abroad [J]. Mining and Metallurgical Engineering, 2004, 24(4): 41–43, 46. (in Chinese)

    Google Scholar 

  2. HAVLIK T, TURZAKOVA M, STOPIC S, FRIEDRICH B. Atmospheric leaching of EAF dust with diluted sulphuric acid [J]. Hydrometallurgy, 2005, 77(1,2): 41–50. DOI: https://doi.org/10.1016/j.hydromet.2004.10.008.

    Article  Google Scholar 

  3. QUIJORNA N, de PEDRO M, ROMERO M, ANDRÉS A. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry [J]. Journal of Environmental Management, 2014, 132: 278–286. DOI: https://doi.org/10.1016/j.jenvman.2013.11.012.

    Article  Google Scholar 

  4. SHAWABKEH R A. Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust [J]. Hydrometallurgy, 2010, 104(1): 61–65. DOI: https://doi.org/10.1016/j.hydromet.2010.04.014.

    Article  Google Scholar 

  5. SUETENS T, KLAASEN B, ACKER K V, BLANPAIN B. Comparison of electric arc furnace dust treatment technologies using exergy efficiency [J]. Journal of Cleaner Production, 2014, 65: 152–167. DOI: https://doi.org/10.1016/j.jclepro.2013.09.053.

    Article  Google Scholar 

  6. TANG Lei, TANG Chao-bo, XIAO Jin, ZENG Ping, TANG Mo-tang. A cleaner process for valuable metals recovery from hydrometallurgical zinc residue [J]. Journal of Cleaner Production, 2018, 201: 764–773. DOI: https://doi.org/10.1016/j.jclepro.2018.08.096.

    Article  Google Scholar 

  7. YAN Huan, CHAI Li-yuan, PENG Bing, LI Mi, PENG Ning, HOU Dong-ke. A novel method to recover zinc and iron from zinc leaching residue [J]. Minerals Engineering, 2014, 55: 103–110. DOI: https://doi.org/10.1016/j.mineng.2013.09.015.

    Article  Google Scholar 

  8. PENG Bing, LI Yan-chun, CHAI Li-yuan, LIU Hui, MIN Xiao-bo, HU Ming, YUAN Ying-zhen, LEI Jie, PENG Ning. Recovery of zinc from zinc leaching residue by ammonia sulfate roasting-selective leaching [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9): 2596–2603. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2015.09.036. (in Chinese)

    Google Scholar 

  9. LI Mi, PENG Bing, CHAI Li-yuan, PENG Ning, YAN Huan, HOU Dong-ke. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon [J]. Journal of Hazardous Materials, 2012, 237–238: 323–330. DOI: https://doi.org/10.1016/j.jhazmat.2012.08.052.

    Article  Google Scholar 

  10. YU J, HAN Y, LI Y, GAO P. Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation [J]. Journal of Mining and Metallurgy B: Metallurgy, 2018, 54(1): 21–27. DOI: https://doi.org/10.2298/JMMB170711050Y.

    Article  Google Scholar 

  11. YU Gang, PENG Ning, ZHOU Lan, LIANG Yan-jie, ZHOU Xiao-yuan, PENG Bing, CHAI Li-yuan, YANG Zhi-hui. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2744–2752. DOI: https://doi.org/10.1016/S1003-6326(15)63899-7.

    Article  Google Scholar 

  12. LI Y, YUAN S, HAN Y, ZHANG S, GAO P. Laboratory study on magnetization reduction of CO [J]. Journal of Mining and Metallurgy B: Metallurgy, 2018, 54(3): 393–399. DOI: https://doi.org/10.2298/JMMB180711016L.

    Article  Google Scholar 

  13. CHEN J H, MI W J, CHEN H Y, LI B, CHOU K C, HOU X M. Iron oxide recovery from fayalite in water vapor at high temperature [J]. Journal of Mining and Metallurgy B: Metallurgy, 2018, 54(1): 1–8. DOI: https://doi.org/10.2298/JMMB160926011C.

    Article  Google Scholar 

  14. ZHANG Du-chao, ZHANG Xin-wang, YANG Tian-zu, RAO Shuai, HU Wei, LIU Wei-feng, CHEN Lin. Selective leaching of zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems [J]. Hydrometallurgy, 2017, 169: 219–228. DOI: https://doi.org/10.1016/j.hydromet.2017.02.003.

    Article  Google Scholar 

  15. LANGOVÁ Š, MATÝSEK D. Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation [J]. Hydrometallurgy, 2010, 101(3,4): 171–173. DOI: https://doi.org/10.1016/j.hydromet.2010.01.003.

    Article  Google Scholar 

  16. YANG Kang, LIU Wei, ZHANG Tian-fu, YAO Li-wei, QIN Wen-qing. Water leaching of arsenic trioxide from metallurgical dust with emphasis on its kinetics [J]. Journal of Central South University, 2021, 28: 679–689. DOI: https://doi.org/10.1007/s11771-021-4637-6.

    Article  Google Scholar 

  17. LECLERC N, MEUX E, LECUIRE J M. Hydrometallurgical extraction of zinc from zinc ferrites [J]. Hydrometallurgy, 2003, 70(1–3): 175–183. DOI: https://doi.org/10.1016/S0304-386X(03)00079-3.

    Article  Google Scholar 

  18. HALLI P, HAMUYUNI J, REVITZER H, LUNDSTRÖM M. Selection of leaching media for metal dissolution from electric arc furnace dust [J]. Journal of Cleaner Production, 2017, 164: 265–276. DOI: https://doi.org/10.1016/j.jclepro.2017.06.212.

    Article  Google Scholar 

  19. STEER J M, GRIFFITHS A J. Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry [J]. Hydrometallurgy, 2013, 140: 34–41. DOI: https://doi.org/10.1016/j.hydromet.2013.08.011.

    Article  Google Scholar 

  20. RAO Shuai, WANG Dong-xing, LIU Zhi-qiang, ZHANG Kui-fang, CAO Hong-yang, TAO Jin-zhang. Selective extraction of zinc, gallium, and germanium from zinc refinery residue using two stage acid and alkaline leaching [J]. Hydrometallurgy, 2019, 183: 38–44. DOI: https://doi.org/10.1016/j.hydromet.2018.11.007.

    Article  Google Scholar 

  21. ZHANG Xue-kai, ZHOU Kang-gen, CHEN Wei, LEI Qing-yuan, HUANG Ying, PENG Chang-hong. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach [J]. Journal of Central South University, 2019, 26: 458–466. DOI: https://doi.org/10.1007/s11771-019-4018-6.

    Article  Google Scholar 

  22. XIA D K, PICKLES C A. Caustic roasting and leaching of electric arc furnace dust [J]. Canadian Metallurgical Quarterly, 1999, 38(3): 175–186. DOI: https://doi.org/10.1016/S0008-4433(99)00014-2.

    Article  Google Scholar 

  23. YANG Kun, LI Shi-wei, ZHANG Li-bo, PENG Jin-hui, CHEN Wei-heng, XIE Feng, MA Ai-yuan. Microwave roasting and leaching of an oxide-sulphide zinc ore [J]. Hydrometallurgy, 2016, 166: 243–251. DOI: https://doi.org/10.1016/j.hydromet.2016.07.012.

    Article  Google Scholar 

  24. CHAIRAKSA-FUJIMOTO R, MARUYAMA K, MIKI T, NAGASAKA T. The selective alkaline leaching of zinc oxide from electric arc furnace dust pre-treated with calcium oxide [J]. Hydrometallurgy, 2016, 159: 120–125. DOI: https://doi.org/10.1016/j.hydromet.2015.11.009.

    Article  Google Scholar 

  25. CHAIRAKSA-FUJIMOTO R, INOUE Y, UMEDA N, ITOH S, NAGASAKA T. New pyrometallurgical process of EAF dust treatment with CaO addition [J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 788–797. DOI: https://doi.org/10.1007/s12613-015-1135-6.

    Article  Google Scholar 

  26. LI Yan-chun, LIU Hui, PENG Bing, MIN Xiao-bo, HU Min, PENG Ning, YUANG Ying-zhen, LEI Jie. Study on separating of zinc and iron from zinc leaching residues by roasting with ammonium sulphate [J]. Hydrometallurgy, 2015, 158: 42–48. DOI: https://doi.org/10.1016/j.hydromet.2015.10.004.

    Article  Google Scholar 

  27. LANGOVÁ Š, LEŠKO J, MATÝSEK D. Selective leaching of zinc from zinc ferrite with hydrochloric acid [J]. Hydrometallurgy, 2009, 95(3, 4): 179–182. DOI: https://doi.org/10.1016/j.hydromet.2008.05.040.

    Article  Google Scholar 

  28. LECLERC N, MEUX E, LECUIRE J M. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride [J]. Journal of Hazardous Materials, 2002, 91(1–3): 257–270. DOI: https://doi.org/10.1016/S0304-3894(01)00394-6.

    Article  Google Scholar 

  29. ZHANG Du-chao, LING Hong-bin, YANG Tian-zu, LIU Wei-feng, CHEN Lin. Selective leaching of zinc from electric arc furnace dust by a hydrothermal reduction method in a sodium hydroxide system [J]. Journal of Cleaner Production, 2019, 224: 536–544. DOI: https://doi.org/10.1016/j.jclepro.2019.03.149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-feng Liu  (刘伟锋).

Additional information

Foundation item

Project(51504292) supported by National Natural Science Foundation of China; Project(2018JJ3678) supported by the Natural Science Foundation of Hunan Province, China

Contributors

The overarching research ideas were developed by ZHANG Du-chao, LIU Wei-feng, CHEN Lin, and YANG Tian-zu. The initial draft of the manuscript was written by ZHANG Du-Chao, WANG Hao, and LIU Ruo-lin. ZHANG Du-Chao and LIU Ruo-lin replied to reviewers’comments and revised the final version.

Conflict of interest

ZHANG Du-chao, LIU Ruo-lin, WANG Hao, LIU Wei-feng, CHEN Lin, and YANG Tian-zu declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Dc., Liu, Rl., Wang, H. et al. Recovery of zinc from electric arc furnace dust by alkaline pressure leaching using iron as a reductant. J. Cent. South Univ. 28, 2701–2710 (2021). https://doi.org/10.1007/s11771-021-4719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4719-5

Key words

关键词

Navigation