Skip to main content
Log in

Leaching behavior of zinc from crude zinc oxide dust in ammonia leaching

次氧化锌烟尘氨浸锌的浸出行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Zinc extraction from crude zinc oxide (CZO) is beneficial to the full utilization of secondary resources and environmental protection. In this paper, a systematic investigation was carried out to study the leaching behavior of CZO by using ammonia-ammonium carbonate solution. It was found that the maximum leaching rate of zinc from CZO dust was 95.7% under the conditions of [Zn]T: [NH3]T: [CO32−] =1: 7.00: 1.75, liquid to solid ratio 5: 1, leaching temperature 30 °C and leaching time 60 min. Compared with pure zinc oxide (PZO) leaching, the CZO leaching required longer time and more leaching agents, which is caused by the Cd2+, Pb2+ and other metal cationic impurities in CZO. The metal cationic impurities dissolved in the leaching solution and combined with ammonium to form complexes, consuming leaching agents and affecting zinc leaching.

摘要

从次氧化锌烟尘中回收锌有利于二次资源充分利用和环境保护. 本文采用氨水-碳酸氢铵溶液作为浸取剂从次氧化锌烟尘浸取锌, 系统研究了该体系中锌的浸出行为. 研究结果表明: 在[Zn]T:[NH3]T:[CO32−]T=1:9.6:2.4、 液固比5:1、 浸出温度30 °C、 浸出时间60 min 的条件下, 锌的浸出率最大, 为95.7%. 而对照样纯氧化锌在[Zn]T:[NH3]T:[CO32−]T=1:7.00:1.75, 浸出时间为20 min 时, 锌的浸出率达99.9%. 次氧化锌烟尘浸出需更长的时间和更多的浸出剂, 其主要原因是烟尘中Cd2+、 Pb2+等金属阳离子杂质溶解于溶液中, 与铵结合形成配合物, 消耗了浸出剂, 影响了锌的浸出.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SADEGHI S M, VANPETEGHEM G, NETO I F F, SOARES H M V M. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches [J]. Waste Management, 2017, 60: 696–705. DOI: https://doi.org/10.1016/j.wasman.2016.12.002.

    Article  Google Scholar 

  2. KAYA M, HUSSAINI S, KURSUNOGLU S. Critical review on secondary zinc resources and their recycling technologies [J]. Hydrometallurgy, 2020, 195: 105362. DOI: https://doi.org/10.1016/j.hydromet.2020.105362.

    Article  Google Scholar 

  3. BLANCO L, ZAPATA V, GARCIA D. Statistical analysis of laboratory results of Zn wastes leaching [J]. Hydrometallurgy, 1999, 54: 41–48. DOI: https://doi.org/10.1016/S0304-386X(99)00057-2.

    Article  Google Scholar 

  4. MIKI T, CHAIRAKSA-FUJIMOTO R, MARUYAMA K, NAGASAKA T. Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution [J]. Journal of Hazardous Materials, 2016, 302: 90–96. DOI: https://doi.org/10.1016/j.jhazmat.2015.09.020.

    Article  Google Scholar 

  5. FENG Lin-yong, YANG Xian-wan, SHEN Qing-feng, XU Ming-li, JIN Bin-jie. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores [J]. Hydrometallurgy, 2007, 89: 305–310. DOI: https://doi.org/10.1016/j.hydromet.2007.08.002.

    Article  Google Scholar 

  6. RAO Shuai, YANG Tian-zu, ZHANG Du-chao, LIU Weifeng, CHEN Lin, HAO Zhan-dong, XIAO Qing-kai, WEN Jian-feng. Leaching of low grade zinc oxide ores in NH4Cl — NH3 solutions with nitrilotriacetic acid as complexing agents [J]. Hydrometallurgy, 2015, 158: 101–106. DOI: https://doi.org/10.1016/j.hydromet.2015.10.013.

    Article  Google Scholar 

  7. HALLI P, HAMUYUNI J, REVITZER H, LUNDSTROM M. Selection of leaching media for metal dissolution from electric arc furnace dust [J]. Journal of Cleaner Production, 2017, 164: 265–276. DOI: https://doi.org/10.1016/j.jclepro.2017.06.212.

    Article  Google Scholar 

  8. DING Zhi-ying, CHEN Qi-yuan, YIN Zhou-lan, LIU Kui. Predominance diagrams for Zn(II)-NH3-Cl-H2O system [J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 832–840. DOI: https://doi.org/10.1016/S1003-6326(13)62536-4.

    Article  Google Scholar 

  9. CAO Hua-zhen, ZHANG Ze-feng, WU Lian-kui, ZHENG Guo-qu. A novel approach of preparing ZnO from ammoniacal leaching solution with high chlorine levels based on thermodynamic analysis [J]. Hydrometallurgy, 2017, 171: 306–311. DOI: https://doi.org/10.1016/j.hydromet.2017.06.005.

    Article  Google Scholar 

  10. WILLIAMSON A J, VERBRUGGEN F, RICO V, BERGMANS J, HENNEBEL T. Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia [J]. Journal of Hazardous Materials, 2020, 403: 123842. DOI: https://doi.org/10.1016/j.jhazmat.2020.123842.

    Article  Google Scholar 

  11. SUN Z H I, XIAO Y, SIETSMA J, AGTERHUIS H, VISSER G, YANG Y S. Lective copper recovery from complex mixtures of end-of-life electronic products with ammonia-based solution [J]. Hydrometallurgy, 2015, 152: 91–99. DOI: https://doi.org/10.1016/j.hydromet.2014.12.013.

    Article  Google Scholar 

  12. LADWIG W K. Impacts of pH and ammonia on the leaching of Cu(II) and Cd(II) from coal fly ash [J]. Chemosphere, 2006, 64(11): 1892–1898. DOI: https://doi.org/10.1016/j.chemosphere.2006.01.041.

    Article  Google Scholar 

  13. YIN Sheng-hua, WANG Lei-ming, EUGIE K, CHEN Xun, YAN Rong-fu, AN K, ZHANG Lei, WU Ai-xiang. Copper bioleaching in China: Review and prospect [J]. Minerals, 2018, 8: 32. DOI: https://doi.org/10.3390/min8020032.

    Article  Google Scholar 

  14. HARVEY T G. The hydrometallurgical extraction of zinc by ammonium carbonate: a review of the schnabel process [J]. Mineral Processing & Extractive Metallurgy Review, 2006, 27: 231–279. DOI: https://doi.org/10.1080/08827500600815271.

    Article  Google Scholar 

  15. MENG Xing-hui, KENNETH H. The principles and applications of ammonia leaching of metals—A Review [J]. Mineral Processing and Extractive Metallurgy Review. 1996, 16(1): 23–61. DOI: https://doi.org/10.1080/08827509608914128.

    Article  Google Scholar 

  16. LIAO Ya-long, ZHOU Juan, HUANG Fei-rong, WANG Yi-yang. Leaching kinetics of calcification roasting calcinate from multimetallic sulfide copper concentrate containing high content of lead and iron [J]. Separation & Purification Technology, 2015, 149: 190–196. DOI: https://doi.org/10.1016/j.seppur.2015.05.042.

    Article  Google Scholar 

  17. REICHLE R A, MCCURDY K G, HEPLER L G. Zinc hydroxide: Solubility product and hydroxy-complex stability constants from 12.5–75 ° C [J]. Canadian Journal of Chemistry, 2011, 53: 3841–3845. DOI: https://doi.org/10.1139/v75-556.

    Article  Google Scholar 

  18. ANTREKOWITSCH J, ANTREKOWITSCH H. Hydrometallurgically recovering zinc from electric arc furnace dusts [J]. JOM, 2001, 53: 26–28. DOI: https://doi.org/10.1007/s11837-001-0008-9.

    Article  Google Scholar 

  19. HARVAY T G. The hydrometallurgical extraction of zinc by ammonium carbonate: A review of the Schnabel process [J]. Mineral Processing And Extractive Metallurgy Review, 2006, 27: 231–279. DOI: https://doi.org/10.1080/08827500600815271.

    Article  Google Scholar 

  20. HUANG Ping, ZHAN yuan, LAN Zi-ping. Experiment study on NH3-NH4Cl-H2O systen leaching of zinc oxide ore [J]. Materials Review, 2016, 30(S2): 469–473. DOI: CNKI:SUN:CLDB.0.2016-S2-104. (in Chinese)

    Google Scholar 

  21. LIU Ji-dong, SU Jia-lin, LV Jian-hua, ZHEN Song-zhang, LIU Guo-cheng. Thermodynamic analysis on system of ZnO-NH3-NH4HCO3-H2O in process of zinc oxide leaching [J]. Inorganic Chemical Industry, 2015, 47(1): 30–33. (in Chinese)

    Google Scholar 

  22. YANG Shen-hai, TANG Mo-tang. Thermodynamics of Zn (II)-NH3-NH4Cl-H2O system [J]. Transactions of Nonferrous Metals Society of China, 2000, 10(6): 830–833. DOI: CNKI:SUN:ZYSY.0.2000-06-029.

    Google Scholar 

  23. TANG Mo-tang, LU Junle, YUAN Yan-shen, YAN Desheng, HE Qing-pu. On the ammoniation-complex equilibria in the system of Zn(lI)-NH3-(NH4)2SO4-H2O [J]. Journal of Central South Institute of Mining and Metallurgy, 1994, 25: 701–705. DOI: CNKI:SUN:ZNGD.0.1994-06-007. (in Chinese)

    Google Scholar 

  24. SPEIGHT J G. Lange’s handbook of chemistry [M]. 16th Edition. Amarica: McGRAW-HILL, 2004. DOI: https://doi.org/10.1080/10426919008953291.

    Google Scholar 

  25. YAO Yun-bin, XIE Tao, GAO Min. Physical chemistry manual [M]. Shanghai: Shanghai Science and Technology Press, 1985. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-bin Yang  (杨永斌) or Qiang Zhong  (钟强).

Additional information

Foundation item

Project(2020YFC1909805) supported by the National Key Research and Development Program of China; Projects (51504293, 51574284) supported by the National Natural Science Foundation of China; Project (2018-GX-A7) supported by Qinghai Provincial Major Scientific and Technological Special Project of China; Project (2020SK2125) supported by the Key Research and Development Program of Hunan Province, China; Project(CSUZC202129) supported by Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University, China

Contributors

ZHONG Qiang and YANG Yong-bin provided the concept and edited the draft of manuscript. JIANG Tao and MENG Fei-yu wrote the first draft of the manuscript. GAO Wei, ZENG Yan and SU Huan-huan conducted the literature review and analyzed the measured data. XU Bin and LI Qian edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Meng, Fy., Gao, W. et al. Leaching behavior of zinc from crude zinc oxide dust in ammonia leaching. J. Cent. South Univ. 28, 2711–2723 (2021). https://doi.org/10.1007/s11771-021-4803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4803-x

Key words

关键词

Navigation