Skip to main content
Log in

Implementation of quantum optical tristate oscillators based on tristate Pauli-X, Y and Z gates by using joint encoding of phase and intensity

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Oscillator circuit has the significant role to always repeat the same signal at the output after certain time interval. In quantum computing, intensity and phase of light signal can be made oscillatory at the output of a quantum optical oscillator circuit. In this paper, we have implemented quantum optical tristate oscillator circuits based on tristate Pauli-X, Y and Z gates using phase and intensity encoding technique of light signal. Here, three different oscillator circuits are developed. The phase of light signal is chosen as the oscillating parameter in all proposed circuits. The truth tables and oscillating phase diagrams are also shown for each oscillator circuit in this paper. The operation of one of the oscillator circuits is simulated with MATLAB to prove its feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MUKHOPADHYAY S. Role of optics in superfast information processing[J]. Indian journal of physics, 2010, 84(8): 1069.

    Article  ADS  Google Scholar 

  2. CHANG D E, VULETIC V, LUKIN M D. Quantum nonlinear optics — photon by photon[J]. Nature photonics, 2014, 8: 685–694.

    Article  ADS  Google Scholar 

  3. DEY S, MUKHOPADHYAY S. All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material[J]. Journal of nonlinear optical physics & materials, 2016, 25(1): 1650012.

    Article  ADS  Google Scholar 

  4. SARFARAJ M N, MUKHOPADHYAY S. All-optical scheme for implementation of tristate Pauli-X, Y and Z quantum gates using phase encoding[J]. Optelectronics letters, 2021, 17(12): 746–750.

    Article  ADS  Google Scholar 

  5. BARENCO A, BENNETT C H, CLEVE R, et al. Elementary gates for quantum computation[J]. Physical review A, 1995, 52: 3457–3467.

    Article  ADS  Google Scholar 

  6. SARKAR B, MUKHOPADHYAY S. All optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches[J]. Journal of optics, 2017, 46(2): 143–148.

    Article  Google Scholar 

  7. DEY S, MUKHOPADHYAY S. Implementation of all-optical Pauli-Y gate by the integrated phase and polarization encoding[J]. IET optoelectronics, 2018, 12(4): 176–179.

    Article  Google Scholar 

  8. SLEATOR T, WEINFURTER H. Realizable universal quantum logic gates[J]. Physical review letters, 1995, 74(20): 4087–4090.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. DEY S, MUKHOPADHYAY S. Approach of implementing phase encoded quantum square root of NOT gate[J]. Electronics letters, 2017, 53(20): 1375–1377.

    Article  ADS  Google Scholar 

  10. DEY S, MUKHOPADHYAY S. All-optical integrated square root of Pauli-Z gates using polarization and phase encoding[J]. Journal of optics, 2019, 48: 520–526.

    Article  Google Scholar 

  11. DUTTA S, MUKHOPADHYAY S. All optical approach of frequency encoded NOT based latch using semiconductor optical amplifier[J]. Journal of optics, 2010, 39(1): 39–45.

    Article  Google Scholar 

  12. YARIV A, YEH P. Photonics — optical electronics in modern communication[M]. 6th ed. New York: Oxford University Press, 2007.

    Google Scholar 

  13. GHATAK A, THYAGARAJAN K. Optical electronics[M]. New Delhi: Cambridge University Press, 2008.

    Google Scholar 

  14. SINGH A, SINGH S, KALER R S. Performance evaluation of EDFA, Raman and SOA optical amplifier for WDM systems[J]. Optik, 2013, 124(2): 95–101.

    Article  ADS  Google Scholar 

  15. GORAI S K, PAL A, MUKHOPADHYAY S. All-optical frequency encoded inversion operation with tristate logic using reflecting semiconductor optical amplifiers[J]. Optik, 2010, 121(16): 1462–1465.

    Article  ADS  Google Scholar 

  16. GARAI S K. A scheme of developing frequency encoded tristate-optical operations using semiconductor optical amplifier[J]. Journal of modern optics, 2010, 27(6): 419–428.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from UGC-JRF fellowship scheme, University Grand Commission (UGC), Govt. of India, an UGC cash program for department of physics, for extending a research fellowship to Mir Nadim Sarfaraj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Nadim Sarfaraj.

Additional information

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarfaraj, M.N., Sebait, M. & Mukhopadhyay, S. Implementation of quantum optical tristate oscillators based on tristate Pauli-X, Y and Z gates by using joint encoding of phase and intensity. Optoelectron. Lett. 18, 673–677 (2022). https://doi.org/10.1007/s11801-022-1191-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-1191-x

Document code

Navigation