Skip to main content
Log in

Implementation of quantum optical tristate CNOT gate using frequency encoding principle with a semiconductor optical amplifier

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Controlled NOT (CNOT) gate is well known because of its several advantages in quantum computing and information processing. In the area of quantum computing, several methods of CNOT gates were established in last few years. In this paper, we propose a new approach of implementation of tristate CNOT operation with light as information carrying signal. To do this, the frequency encoding method has been exploited for successful realization of the CNOT gate with light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MUKHOPADHYAY S. Role of optics in super-fast information processing[J]. Indian journal of physics, 2010, 84(8): 1069–1074.

    Article  ADS  Google Scholar 

  2. FISHER K, BROADBENT A, SHALM L, et al. Quantum computing on encrypted data[J]. Nature communications, 2014, 5: 3074.

    Article  ADS  Google Scholar 

  3. MUKHOPADHYAY S, DEY S, SAHA S. Photonics: a dream of modern technology[M]//GANGOPADHYAY T K, KUMBHAKAR P, MANDAL M K. Photonics and fiber optics: foundations and applications. CRC Press, 2019: 28.

  4. CONNELLY M J. Semiconductor optical amplifiers[M]. 1st ed. New York: Springer, 2007: 127–165.

    Google Scholar 

  5. DUTTA N K, WANG Q, ZHU G, et al. Semiconductor optical amplifiers-functional applications[J]. Journal of optics, 2015, 33(4): 197–219.

    Article  Google Scholar 

  6. DUTTA S, MUKHOPADHYAY S. An all optical approach of frequency encoded NOT based latch using semiconductor optical amplifier[J]. Journal of optics, 2010, 39: 39–45.

    Article  Google Scholar 

  7. MANDAL M, GOSWAMI I, MUKHOPADHYAY S. Implementation of programmable photonic one qubit quantum gates using intensity and phase encoding jointly[J]. Journal of optics, 2022.

  8. DEY S, MUKHOPADHYAY S. Implementation of alloptical Pauli-Y gate by the integrated phase and polarisation encoding[J]. IET optoelectronics, 2018, 12: 176–179.

    Article  Google Scholar 

  9. SARKAR B, MUKHOPADHYAY S. An all-optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches[J]. Journal of optics, 2017, 46: 143–148.

    Article  Google Scholar 

  10. SARKAR B, MUKHOPADHYAY S. An all-optical system for implementing integrated Hadamard-Pauli quantum logic[J]. Journal of optical communications, 2019.

  11. SARFARAJ M N, MUKHOPADHYAY S. All-optical scheme for implementation of tri-state Pauli-X, Y and Z quantum gates using phase encoding[J]. Optoelectronics letters, 2021, 17: 746–750.

    Article  ADS  Google Scholar 

  12. DEY S, DE P, MUKHOPADHYAY S. An all-optical implementation of Fredkin gate using Kerr effect[J]. Optoelectronics letters, 2019, 15: 317–320.

    Article  ADS  Google Scholar 

  13. DEY S, MUKHOPADHYAY S. All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material[J]. Journal of nonlinear optical physics & materials, 2016, 25(01): 1650012.

    Article  ADS  Google Scholar 

  14. HU J, HUANG Y P, KUMAR P. Self-stabilized quantum optical Fredkin gate[J]. Optics letters, 2013, 38(4): 522–524.

    Article  ADS  Google Scholar 

  15. ZHU M, YE L. Implementation of swap gate and Fredkin gate using linear optical elements[J]. International journal of quantum information, 2013, 11(03): 1350031.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. FEDOROV A, STEFFEN L, BAUR M, et al. Implementation of a Toffoli gate with superconducting circuits[J]. Nature, 2012, 481: 170–172.

    Article  ADS  Google Scholar 

  17. ANDRIANOV S N, KALACHEV A A, SHINDYAEV O P. Controlled-NOT gate for frequency-encoded qubits based on six-wave mixing[J]. Laser physics, 2018, 28: 125204.

    Article  ADS  Google Scholar 

  18. POOLEY M A, ELLIS D J P, PATEL R B, et al. Controlled NOT gate operating with single photons[J]. Applied physics letters, 2012, 100: 211103.

    Article  ADS  Google Scholar 

  19. LOPES J H, SOARES W C, BERNARDO B, et al. Linear optical CNOT gate with orbital angular momentum and polarization[J]. Quantum information processing, 2019, 18: 256.

    Article  ADS  Google Scholar 

  20. BISWAS K K, SAJEED S. Design and realization of a quantum controlled NOT gate using optical implementation[J]. International journal of advancements in research & technology, 2012, 1(1): 2278.

    Google Scholar 

  21. CRESPI A, RAMPONI R, OSELLAME R, et al. Integrated photonic quantum gates for polarization qubits[J]. Nature communications, 2011, 2: 566.

    Article  ADS  Google Scholar 

  22. SAMANTA D. Implementation of a polarization-encoded quantum CNOT gate[J]. Journal of optical communications, 2022.

  23. DEY S, MUKHOPADHYAY S. Approach of implementing phase encoded quantum square root of NOT gate[J]. Electronics letters, 2017, 53: 1375–1377.

    Article  ADS  Google Scholar 

  24. MATHAIAS S, MILLER D M, ROLF D. Quantum circuits employing roots of the Pauli matrices[J]. Physical review A, 2013, 88(4): 042322.

    Article  Google Scholar 

  25. MANDAL M, MUKHOPADHYAY S. Photonic scheme for implementing quantum square root controlled Z gate using phase and intensity encoding of light[J]. IET optoelectronics, 2021, 15: 52–60.

    Article  Google Scholar 

  26. DEY S, MUKHOPADHYAY S. All-optical integrated square root of Pauli-Z (SRZ) gates using polarization and phase encoding[J]. Journal of optics, 2019, 48: 520–526.

    Article  Google Scholar 

  27. HAZRA S, MUKHOPADHYAY S. An alternative scheme of quantum optical superfast tristate CNOT gate using frequency encoding principle of light with semiconductor optical amplifier[M]//ACHARYYA A, BISWAS A, INOKAWA H. New horizons in millimeter-wave, infrared and terahertz technologies. Lecture notes in electrical engineering. Singapore: Springer, 2022: 187–196.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (Govt. of India) for providing INSPIRE fellowship to one of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Hazra.

Additional information

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, S., Mukhopadhyay, S. Implementation of quantum optical tristate CNOT gate using frequency encoding principle with a semiconductor optical amplifier. Optoelectron. Lett. 19, 269–273 (2023). https://doi.org/10.1007/s11801-023-2195-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-023-2195-x

Document code

Navigation