Skip to main content
Log in

Study on thermal stability of polyurethane-urea based on polysiloxane and polycaprolactone diols

  • Polymer, Industrial Chemistry, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Different grades of segmented polyurethane-urea were synthesized through two-step solution polymerization of polydimethylsiloxane (PDMS) and polycaprolactone (PCL) polyols with methylene diphenyl diisocyanate (MDI) and mixture of 1,4-buthanediol and 4,4-methylene bis (3-chloro 2,6-diethylaniline) in toluene/tetra-hydrofuran media. Structural characterization of the synthesized samples was conducted using Fourier transform infra-red spectroscopy. X-ray diffraction, dynamic mechanical thermal analysis, thermal gravimetric analysis, and differential scanning calorimetry techniques were utilized to assess material characteristics. The results showed a relationship between PDMS content and thermal stability, morphology and mechanical properties of the urethane-urea samples. Onset degradation temperature was increased by increasing the PDMS content in the polyurethane backbone where the crystallinity was varied versus PDMS content. Strong interaction established between hard and soft segments resulted in a positive shift in PCL glass transition temperature. Tracking E′, E″ and damping factor in DMTA measurements confirmed the two-phase morphology. Hydrophobicity of polymer surfaces was traced by contact angle measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Mark, Polymer Data Handbook, Oxford University, New York (1999).

    Google Scholar 

  2. L. F. Wang, Q. Ji, T. E. Glass, T. C. Ward, J. E. McGrath, M. Muggli, G. Burns and U. Sorathia, Polymer, 41, 5083 (2000).

    Article  CAS  Google Scholar 

  3. J. Green, J. Fire Sci., 14, 426 (1996).

    Article  CAS  Google Scholar 

  4. M. Barikani, F. Askari and M. Barmar, Cell. Polym., 29, 343 (2010).

    CAS  Google Scholar 

  5. S. V. Levchik and E. D. Weil, Polym. Int., 53, 1585 (2004).

    Article  CAS  Google Scholar 

  6. G. P. McCormick and E. Howells, Power Delivery, IEEE Transactionson, 12, 1184 (1997).

    Article  CAS  Google Scholar 

  7. J. H. Park, K.D. Park and Y. H. Bae, Biomaterials, 20, 943 (1999).

    Article  Google Scholar 

  8. C. Yang, C. Li and S. Cooper, J. Polym. Sci. Part B, Polym. Phys., 29, 86 (2003).

    Google Scholar 

  9. F. Lim, C. Yang and S. Cooper, Biomaterials, 15, 408 (1994).

    Article  CAS  Google Scholar 

  10. Y. Xue-Hai, M. R. Nagarajan, T.G. Grasel, P. E. Gibson and S. L. Cooper, J. Polym. Sci., Polymer Phys. Ed., 23, 2319 (2003).

    Article  Google Scholar 

  11. F. Wang, Polydimethylsiloxane modification of segmented thermoplastic polyurethanes and polyureas, PhD Thesis, Virginia Technical University, Blacksburg, Virginia, 35 (1998).

    Google Scholar 

  12. T. Easton and B. Thomas, US Patents, 4,888,107 (1989).

  13. I. Yilgor, W. P. Steckle, E. Yilgor, R.G. Freelin and J. S. Riffle, J. Polym. Sci. Part A: Polymer Chem., 27, 3673 (2003).

    Article  Google Scholar 

  14. I. Yilgor, A.K. Sha’aban, W. P. Steckle, D. Tyagi, G. L. Wilkes and J. E. McGrath, Polymer, 25, 1800 (1984).

    Article  CAS  Google Scholar 

  15. E. Yilgor and I. Yilgor, Polym. Prepr., 39, 465 (1998).

    CAS  Google Scholar 

  16. K. Madhavan and B. Reddy, J. Polym. Sci. Part A: Polymer Chem., 44, 2980 (2006).

    Article  CAS  Google Scholar 

  17. K. Madhavan and B. Reddy, J. Membr. Sci., 283, 357 (2006).

    Article  CAS  Google Scholar 

  18. M. S. Yen and P. Y. Tsai, J. Appl. Polym. Sci., 102, 210 (2006).

    Article  CAS  Google Scholar 

  19. H. B. Park, C. K. Kim and Y.M. Lee, J. Membr. Sci., 204, 257 (2002).

    Article  CAS  Google Scholar 

  20. J. T. Yeh and Y. C. Shu, J. Appl. Polym. Sci., 115, 2616 (2010).

    Article  CAS  Google Scholar 

  21. F. Chuang, W. Tsen and Y. Shu, Polym. Degrad. Stab., 84, 69 (2004).

    Article  CAS  Google Scholar 

  22. F. Belva, S. Bourbigot, S. Duquesn, C. Jama, M. L. Bras, C. Pelegris and M. Rivenet, Polym. Adv. Technol., 17, 304 (2006).

    Article  CAS  Google Scholar 

  23. A. Stanciu, A. Airinei, D. Timpu, A. Ioanid, C. Ioan and V. Bula covschi, Eur. Polym. J., 35, 1959 (1999).

    Article  CAS  Google Scholar 

  24. A. Stanciu, A. Airinei, D. Timpu, A. Ioanid, C. Ioan and V. Bulacovschi, Eur. Polym. J., 35, 2039 (1999).

    Article  CAS  Google Scholar 

  25. S. Ioan, G. Grigorescu and A. Stanciu, Eur. Polym. J., 38, 2295 (2002).

    Article  CAS  Google Scholar 

  26. T. Choi, J. Weksler, A. Padsalgikar and J. Runt, Polymer, 50, 2320 (2009).

    Article  CAS  Google Scholar 

  27. R. Hernandez, J. Weksler, A. Padsalgikar and J. Runt, Macromolecules, 40, 5441 (2007).

    Article  CAS  Google Scholar 

  28. Q. Dou, C. Wang, C. Cheng, W. Han, P. C. Thune and W. Ming, Macromol. Chem. Phys., 207, 2170 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Barikani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askari, F., Barikani, M. & Barmar, M. Study on thermal stability of polyurethane-urea based on polysiloxane and polycaprolactone diols. Korean J. Chem. Eng. 30, 2093–2099 (2013). https://doi.org/10.1007/s11814-013-0139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0139-z

Key words

Navigation