Skip to main content

Advertisement

Log in

Hydrothermal carbonization of oil palm shell

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Palm shell is one of the most plentiful wastes of the palm oil mill industry. This study identifies the capability of hydrothermal carbonization process (HTC) to convert palm shell into high energy hydrochar. The influence of reaction time and reaction temperature of the HTC process was investigated. The process parameters selected were temperature 200 °C to 240 °C, time 10 to 60min, and water to biomass ratio was fixed at 10 : 1 by weight %. Fourier transform infrared (FTIR), elemental, proximate, Burner Emmett and Teller (BET), thermo-gravimetric (TGA) analyses were performed to characterize the product and the feed. The heating value (HHV) was increased from 12.24 MJ/ kg (raw palm shell) to 22.11 MJ/kg (hydrochar produced at 240 °C and 60 min). The hydrochar yield exhibited a higher degree inverse proportionality with temperature and reaction time. Elemental analysis revealed an increase in carbon percentage and a proportional decrease in hydrogen and oxygen contents which caused higher value of HHV. The dehydration and decarboxylation reactions take place at higher temperatures during HTC resulting in the increase of carbon and decrease in oxygen values of hydrochar. The FESEM results reveal that the structure of raw palm shell was decomposed by HTC process. The pores on the surface of hydrochar increased as compared to the raw palm shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Shuit, K.T. Tan, K. Lee and A. Kamaruddin, Energy, 34, 1225 (2009).

    Article  CAS  Google Scholar 

  2. A. Demirbas, Energy Convers. Manage., 42, 1357 (2001).

    Article  CAS  Google Scholar 

  3. J. Twidell, Renew. Energy World, 1, 38 (1998).

    Google Scholar 

  4. A. Bridgwater and G. Peacocke, Renew. Sustain. Energy Rev., 4, 1 (2000).

    Article  CAS  Google Scholar 

  5. K. Maher and D. Bressler, Bioresour. Technol., 98, 2351 (2007).

    Article  CAS  Google Scholar 

  6. C. N. Hamelinck, G. v. Hooijdonk and A. P. Faai j, Biomass. Bioenergy, 28, 384 (2005).

    Article  CAS  Google Scholar 

  7. C. E. Wyman, Bioresour. Technol., 50, 3 (1994).

    Article  CAS  Google Scholar 

  8. N. Mubarak, A. Kundu, J. Sahu, E. Abdullah and N. Jayakumar, Biomass. Bioenergy, 61, 265 (2014).

    Article  CAS  Google Scholar 

  9. Y. Basiron, Eur. J. Lipid. Sci. Technol., 109, 289 (2007).

    Article  CAS  Google Scholar 

  10. C. S. Goh, K.T. Tan, K.T. Lee and S. Bhatia, Bioresour. Technol., 101, 4834 (2010).

    Article  CAS  Google Scholar 

  11. A. Rahman Mohamed and K.T. Lee, Energy Policy, 34, 2388 (2006).

    Article  Google Scholar 

  12. F. Abnisa, W. Daud, W. Husin and J. Sahu, Biomass. Bioenergy, 35, 1863 (2011).

    Article  CAS  Google Scholar 

  13. S. S. Jamari and J. R. Howse, Biomass. Bioenergy, 47, 82 (2012).

    Article  CAS  Google Scholar 

  14. K. Mae, I. Hasegawa, N. Sakai and K. Miura, Energy Fuel, 14, 1212 (2000).

    Article  CAS  Google Scholar 

  15. C. W. Kean, J. N. Sahu and W. W. Daud, BioResources., 8, 1831 (2013).

    Article  Google Scholar 

  16. G.K. Parshetti, S. Kent Hoekman and R. Balasubramanian, Bioresour. Technol., 135, 683 (2013).

    Article  CAS  Google Scholar 

  17. A.A. Salema and F. N. Ani, J. Anal. Appl. Pyrol., 96, 162 (2012).

    Article  CAS  Google Scholar 

  18. K. Wiedner, C. Rumpel, C. Steiner, A. Pozzi, R. Maas and B. Glaser, Biomass. Bioenergy, 59, 264 (2013).

    Article  CAS  Google Scholar 

  19. X. Lu, P. J. Pellechia, J.R. Flora and N.D. Berge, Bioresour. Technol., 138, 180 (2013).

    Article  CAS  Google Scholar 

  20. A. Kruse, A. Funke and M.-M. Titirici, Curr. Opin. Chem. Biol., 17, 515 (2013).

    Article  CAS  Google Scholar 

  21. S. Xiu, A. Shahbazi, V. Shirley and D. Cheng, J. Anal. Appl. Pyrol., 88, 73 (2010).

    Article  CAS  Google Scholar 

  22. L.-P. Xiao, Z.-J. Shi, F. Xu and R.-C. Sun, Bioresour. Technol., 118, 619 (2012).

    Article  CAS  Google Scholar 

  23. X. Lu, P. J. Pellechia, J.R. Flora and N.D. Berge, Bioresour. Technol., 138, 180 (2013).

    Article  CAS  Google Scholar 

  24. Z. Liu and R. Balasubramanian, Proced. Environ. Sci., 16, 159 (2012).

    Article  CAS  Google Scholar 

  25. Z. Liu, A. Quek, S. Kent Hoekman and R. Balasubramanian, Fuel, 103, 943 (2012).

    Article  Google Scholar 

  26. K. Tekin, S. Karagöz and S. Bektas, Renew. Sustain. Energy Rev., 40, 673 (2014).

    Article  CAS  Google Scholar 

  27. C. Tian, B. Li, Z. Liu, Y. Zhang and H. Lu, Renew. Sustain. Energy Rev., 38, 933 (2014).

    Article  CAS  Google Scholar 

  28. Z. Shuping, W. Yulong, Y. Mingde, I. Kaleem, L. Chun and J. Tong, Energy, 35, 5406 (2010).

    Article  Google Scholar 

  29. P. McKendry, Bioresour. Technol., 83, 37 (2002).

    Article  CAS  Google Scholar 

  30. S. H. Chang, Biomass. Bioenergy, 62, 174 (2014).

    Article  CAS  Google Scholar 

  31. S. Kang, X. Li, J. Fan and J. Chang, Ind. Eng. Chem. Res., 51, 9023 (2012).

    Article  CAS  Google Scholar 

  32. N.D. Berge, K. S. Ro, J. Mao, J.R. Flora, M.A. Chappell and S. Bae, Environ. Sci. Technol., 45, 5696 (2011).

    Article  CAS  Google Scholar 

  33. M. Sevilla, J. A. Maciá-Agulló and A.B. Fuertes, Biomass. Bioenergy, 35, 3152 (2011).

    Article  CAS  Google Scholar 

  34. A. Demirbas, Energy Convers. Manage., 49, 2106 (2008).

    Article  CAS  Google Scholar 

  35. Q. Xu, Q. Qian, A. Quek, N. Ai, G. Zeng and J. Wang, ACS Sustain. Chem. Eng., 1, 1092 (2013).

    Article  CAS  Google Scholar 

  36. A. Fuertes, M.C. Arbestain, M. Sevilla, J. Maciá-Agulló, S. Fiol, R. López, R. J. Smernik, W. Aitkenhead, F. Arce and F. Macias, Soil.Res., 48, 618 (2010).

    Article  CAS  Google Scholar 

  37. Z. Liu, A. Quek, S. Kent Hoekman and R. Balasubramanian, Fuel, 103, 943 (2013).

    Article  CAS  Google Scholar 

  38. G. K. Parshetti, S. Chowdhury and R. Balasubramanian, Bioresour. Technol., 161, 310 (2014).

    Article  CAS  Google Scholar 

  39. G.K. Parshetti, S. Kent Hoekman and R. Balasubramanian, Bioresour. Technol., 135, 683 (2012).

    Article  Google Scholar 

  40. C. Everard, C. Fagan, C. O’Donnell, D. O’Callaghan and J. Lyng, J. Food Eng., 75, 415 (2006).

    Article  Google Scholar 

  41. Y. Wang, T.D. Wig, J. Tang and L. M. Hallberg, J. Food Eng., 57, 257 (2003).

    Article  Google Scholar 

  42. M. Pala, I.C. Kantarli, H.B. Buyukisik and J. Yanik, Bioresour. Technol., 161, 255 (2014).

    Article  CAS  Google Scholar 

  43. A. Arami-Niya, F. Abnisa, M. S. Shafeeyan, W. Daud and J. N. Sahu, BioResources., 7, 0246 (2012).

    CAS  Google Scholar 

  44. S. Marx, I. Chiyanzu and N. Piyo, Bioresour. Technol., 164, 177 (2014).

    Article  CAS  Google Scholar 

  45. D.T. Chadwick, K. P. McDonnell, L. P. Brennan, C. C. Fagan and C.D. Everard, Renew. Sustain. Energy Rev., 30, 672 (2014).

    Article  CAS  Google Scholar 

  46. J. Park, S.W. Won, J. Mao, I. S. Kwak and Y.-S. Yun, J. Hazard. Mater., 181, 794 (2010).

    Article  CAS  Google Scholar 

  47. T. Zhang, W. P. Walawender, L. Fan, M. Fan, D. Daugaard and R. Brown, Chem. Eng. J., 105, 53 (2004).

    Article  CAS  Google Scholar 

  48. W.M. A. W. Daud, W. S.W. Ali and M. Z. Sulaiman, Carbon, 38, 1925 (2000).

    Article  CAS  Google Scholar 

  49. K. Kirtania, J. Joshua, M.A. Kassim and S. Bhattacharya, Fuel Process. Technol., 117, 44 (2014).

    Article  CAS  Google Scholar 

  50. A. C. Lua and T. Yang, J. Colloid Interface Sci., 276, 364 (2004).

    Article  CAS  Google Scholar 

  51. K. Rashid, K. Reddy, A. Al Shoaibi and C. Srinivasakannan, Can. J. Chem. Eng., 92, 426 (2014).

    Article  CAS  Google Scholar 

  52. W. Li, K. Yang, J. Peng, L. Zhang, S. Guo and H. Xia, Ind. Crop. Prod., 28, 190 (2008).

    Article  CAS  Google Scholar 

  53. M. Sevilla, A. Fuertes and R. Mokaya, Energy Environ. Sci., 4, 1400 (2011).

    Article  CAS  Google Scholar 

  54. S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z.A. Rashid and M. J. Aris, Bioresour. Technol., 101, 4584 (2010).

    Article  CAS  Google Scholar 

  55. M. n. Lapuerta, J. J. Hernandez and J. n. Rodríguez, Biomass. Bioenergy, 27, 385 (2004).

    Article  CAS  Google Scholar 

  56. L. Sanchez-Silva, D. López-González, J. Villasenor, P. Sanchez and J. Valverde, Bioresour. Technol., 109, 163 (2012).

    Article  CAS  Google Scholar 

  57. H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, Fuel, 86, 1781 (2007).

    Article  CAS  Google Scholar 

  58. M. Mohammed, A. Salmiaton, W. Wan Azlina and M. Mohamad Amran, Bioresour. Technol., 110, 628 (2012).

    Article  CAS  Google Scholar 

  59. S.A. El-Sayed and M. Mostafa, Energy Convers. Manage., 85, 165 (2014).

    Article  Google Scholar 

  60. M. Asadieraghi and W. M. A. Wan Daud, Energy Convers. Manage., 82, 71 (2014).

    Article  CAS  Google Scholar 

  61. Z. Liu, A. Quek and R. Balasubramanian, Appl. Energy, 113, 1315 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natesan Subramanian Jayakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizamuddin, S., Jayakumar, N.S., Sahu, J.N. et al. Hydrothermal carbonization of oil palm shell. Korean J. Chem. Eng. 32, 1789–1797 (2015). https://doi.org/10.1007/s11814-014-0376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0376-9

Keywords

Navigation