Skip to main content
Log in

Modelling and Simulation of Machining Processes

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The modelling of metal cutting has proved to be particularly complex due to the diversity of physical phenomena involved, including thermo-mechanical coupling, contact/friction and material failure. The present work outlines the wide range of complex physical phenomena involved in the chip formation in a descriptive manner. In order to improve and understand the process different numerical strategies have been used for simulation. Several of these numerical strategies are reviewed and a short discussion of their relative merits and drawbacks is presented. By means of several examples, where a combined experimental/numerical effort was undertaken, we try to illustrate what numerical techniques, models and pertinent parameters are needed for successful simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shaw MC (1984) Metal cutting principles. Clarendon, Oxford

    Google Scholar 

  2. Trent EM (1991) Metal cutting, 3rd edn. Butterworth–Heinemann, London

    Google Scholar 

  3. Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools, 2nd edn. Marcel Decker, New York

    Google Scholar 

  4. Childs THC, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining: theory and applications. Arnold, Paris

    Google Scholar 

  5. Atkins AG, Mai YW (1985) Elastic and plastic fracture. Ellis Horwood, Chichester

    Google Scholar 

  6. Astakhov VP, Shvets SV, Osman MOM (1997) The bending moment as the cause for chip formation. In: Manufacturing science and engineering. Proceedings of the 1997 ASME international mechanical engineering congress & exposition. MED, vol 12. ASME, New York, pp 53–60

    Google Scholar 

  7. Zorev NN (1966) Metal cutting mechanics. Pergamon, New York

    Google Scholar 

  8. Astakhov VP (1999) Metal cutting mechanics. CRC, Boca Raton

    Google Scholar 

  9. Shirakashi T, Usui E (1974) Simulation analysis of orthogonal metal cutting mechanism. In: Proceedings of the first international conference on production engineering, part I, pp 535–540

  10. Usui E, Shirakashi T (1982) Mechanics of machining—from “descriptive” to “predictive” theory. In: Kops L, Ramalingam S (eds) On the art of cutting metals—75 years later: a tribute to F.W. Taylor. Proceedings of the winter annual meeting of the American Society of Mechanical Engineers. PED, vol 7. ASME, New York, pp 13–35

    Google Scholar 

  11. Klamecki BE (1973) Incipient chip formation in metal cutting—a three-dimensional finite element analysis. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana

  12. Ehmann KF, Kpoor SG, DeVor RE, Lazoglu I (1997) Machining processes modeling: a review. J Manuf Sci Eng Trans ASME 119:655–663

    Google Scholar 

  13. Mackerle J (1999) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86:17–44

    Google Scholar 

  14. Mackerle J (2003) Finite element analysis and simulation of machining: an addendum a bibliography (1996–2002). Int J Mach Tools Manuf 43:103–114

    Google Scholar 

  15. Lin Z-C, Lin SY (1992) A coupled finite element model of thermo-elastic-plastic large deformation for orthogonal cutting. J Eng Mater Technol Trans ASME 114:218–226

    Article  Google Scholar 

  16. Lin Z-C, Pan W-C (1993) A thermoelastic-plastic large deformation model for orthogonal cutting with tool flank wear—part I. Int J Mech Sci 35:829–840

    MATH  Google Scholar 

  17. Xie JQ, Bayoumi AE, Zbib HM (1994) Characterization of chip formation and shear banding in orthogonal machining using finite element analysis. In: Batra RC, Zbib HM (eds) Material instabilities: theory and applications. Proceedings of the 1994 ASME international mechanical engineering congress & exposition. AMD, vol 183. ASME, New York, pp 285–301. MD, vol 50

    Google Scholar 

  18. Hashemi J, Tseng A, Chou PC (1994) Finite element modeling of segmental chip formation in high-speed machining. J Mater Eng Perform 3:712–721

    Google Scholar 

  19. Guo YB, Dornfeld DA (1998) Finite element modeling of burr formation process in drilling 304 stainless steel. Trans NAMRI/SME XXVI:207–212

    Google Scholar 

  20. Lin Z-C, Lin Y-Y (1999) Fundamental modeling for oblique cutting by thermo-elastic-plastic FEM. Int J Mech Sci 41:941–965

    MATH  Google Scholar 

  21. Guo YB, Dornfeld DA (2000) Finite element modeling of burr formation process in drilling 304 stainless steel. J Manuf Sci Eng Trans ASME 122:612–619

    Google Scholar 

  22. Lo S-P (2000) An analysis of cutting under different rake angles using the finite element method. J Mater Process Technol 105:143–151

    Google Scholar 

  23. Lin Z-C, Lin Y-Y (2001) Three-dimensional elastic-plastic finite element analysis for orthogonal cutting with discontinuous chip of 6–4 brass. Theor Appl Fract Mech 35:137–153

    Google Scholar 

  24. Mamalis AG, Horváth M, Branis AS, Manolakos DE (2001) Finite element simulation of chip formation in orthogonal metal cutting. J Mater Process Technol 110:19–27

    Google Scholar 

  25. Guo YB, Liu CR (2002) 3D FEA modeling of hard turning. J Manuf Sci Eng Trans ASME 124:189–199

    Google Scholar 

  26. Ng E-G, El-Wardany TI, Dumitrescu M, Elbestawi MA (2002) Physics-based simulation of high speed machining. Mach Sci Technol 6:301–329

    Google Scholar 

  27. Lo S-P, Lin Y-Y (2002) An investigation of the sticking behavior on the chip–tool interface using thermo-elastic-plastic finite element method. J Mater Process Technol 121:285–292

    Google Scholar 

  28. Yang X, Liu CR (2002) A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method. Int J Mech Sci 44:703–723

    MATH  Google Scholar 

  29. Kishawy HA, Rogers RJ, Balihodzic N (2002) A numerical investigation of the chip–tool interface in orthogonal machining. Mach Sci Technol 6:397–414

    Google Scholar 

  30. Ko D-C, Ko S-L, Kim B-M (2002) Rigid-thermoviscoplastic finite element simulation of non-steady-state orthogonal cutting. J Mater Process Technol 130–131:345–350

    Google Scholar 

  31. Fihri Fassi H, Bousshine L, Chaaba A, Elharif A (2003) Numerical simulation of orthogonal cutting by incremental elastoplastic analysis and finite element method. J Mater Process Technol 141:181–188

    Google Scholar 

  32. Soo SL, Aspinwall DK, Dewes RC (2004) 3D FE modelling of the cutting of Inconel 718. J Mater Process Technol 150:116–123

    Google Scholar 

  33. Barge M, Hamdi H, Rech J, Bergheau J-M (2005) Numerical modelling of orthogonal cutting: influence of numerical parameters. J Mater Process Technol 164–165:1148–1153

    Google Scholar 

  34. Shih AJ, Chandrasekar S, Yang HT (1990) The finite element simulation of metal cutting processes with strain-rate and temperature effects. In: Klamecki BE, Weinmann KJ (eds) Fundamental issues in machining. Proceedings of the winter annual meeting of the American Society of Mechanical Engineers. PED, vol 43. ASME, New York, pp 11–24

    Google Scholar 

  35. Komvopoulos K, Erpenbeck SA (1991) Finite element modeling of orthogonal metal cutting. J Eng Ind Trans ASME 113:253–267

    Google Scholar 

  36. Shih AJ, Yang HTY (1993) Experimental and finite element predictions of residual stresses due to orthogonal cutting. Int J Numer Methods Eng 36:1487–1507

    Google Scholar 

  37. Shih AJ (1995) Finite element simulation of orthogonal metal cutting. J Eng Ind Trans ASME 117:84–93

    MathSciNet  Google Scholar 

  38. Shih AJ (1996) Finite element analysis of rake angle effects in orthogonal metal cutting. Int J Mech Sci 38:1–17

    MATH  MathSciNet  Google Scholar 

  39. Huang JM, Black JT (1996) An evaluation of chip separation criteria for the FEM simulation of machining. J Manuf Sci Eng Trans ASME 118:545–554

    Google Scholar 

  40. Obikawa T, Usui E (1996) Computational machining of titanium alloy—finite element modeling and a few results. J Manuf Sci Eng Trans ASME 118:208–215

    Google Scholar 

  41. Sasahara H, Obikawa T, Shirakashi T (1996) FEM analysis of cutting sequence effect on mechanical characteristics in machined layer. J Mater Process Technol 62:448–453

    Google Scholar 

  42. Obikawa T, Sasahara H, Shirakashi T, Usui E (1997) Application of computational machining method to discontinuous chip formation. J Manuf Sci Eng Trans ASME 119:667–674

    Google Scholar 

  43. Lei S, Shin YC, Incropera FP (1999) Thermo-mechanical modeling of orthogonal machining process by finite element analysis. Int J Mach Tools Manuf 39:731–750

    Google Scholar 

  44. Lin Z-C, Lo S-P (2001) 2-D discontinuous chip cutting model by using strain energy density theory and elastic-plastic finite element method. Int J Mech Sci 43:381–398

    MATH  Google Scholar 

  45. Li K, Gao X-L, Sutherland JW (2002) Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J Mater Process Technol 127:309–324

    Google Scholar 

  46. Shi G, Deng X, Shet C (2002) A finite element study of the effect of friction in orthogonal metal cutting. Finite Elements Anal Des 38:863–883

    MATH  Google Scholar 

  47. McClain B, Batzer SA, Maldonado GI (2002) A numeric investigation of the rake face stress distribution in orthogonal machining. J Mater Process Technol 123:114–119

    Google Scholar 

  48. Shet C, Deng X (2003) Residual stresses and strains in orthogonal metal cutting. Int J Mach Tools Manuf 43:573–587

    Google Scholar 

  49. Potdar YK, Zehnder AT (2003) Measurements and simulations of temperature and deformation fields in transient metal cutting. J Manuf Sci Eng Trans ASME 125:645–655

    Google Scholar 

  50. Ohbuchi Y, Obikawa T (2005) Adiabatic shear in chip formation with negative rake angle. Int J Mech Sci 47:1377–1392

    MATH  Google Scholar 

  51. Mabrouki T, Rigal J-F (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176:214–221

    Google Scholar 

  52. Sekhon GS, Chenot J-L (1993) Numerical simulation of continuous chip formation during non-steady orthogonal cutting. Eng Comput 10:31–48

    Google Scholar 

  53. Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Methods Eng 38:3675–3694

    MATH  Google Scholar 

  54. Ceretti E, Fallböhmer P, Wu WT, Altan T (1996) Application of 2D FEM to chip formation in orthogonal cutting. J Mater Process Technol 59:169–180

    Google Scholar 

  55. Madhavan V, Chandrasekar S (1997) Some observations on the uniqueness of machining. In: Predictable modeling of metal cutting as a means of bridging the gap between theory and practice. Proceedings of the 1997 ASME international mechanical engineering congress & exposition. MED, vol 6-2. ASME, New York, pp 99–109

    Google Scholar 

  56. Owen DRJ Vaz Jr M (1999) Computational techniques applied to high-speed machining under adiabatic strain localization conditions. Comput Methods Appl Mech Eng 171:445–461

    MATH  Google Scholar 

  57. Ng E-G, Aspinwall DK, Brazil D, Monaghan J (1999) Modelling of temperature and forces when orthogonally machining hardened steel. Int J Mach Tools Manuf 39:885–903

    Google Scholar 

  58. Monaghan J, MacGinley T (1999) Modelling the orthogonal machining process using coated carbide cutting tools. Comput Mater Sci 16:275–284

    Google Scholar 

  59. Ceretti E, Lucchi M, Altan T (1999) FEM simulation of orthogonal cutting: serrated chip formation. J Mater Process Technol 95:17–26

    Google Scholar 

  60. Özel T, Altan T (2000) Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in highspeed flat end milling. Int J Mach Tools Manuf 40:713–738

    Google Scholar 

  61. Madhavan V, Chandrasekar S, Farris TN (2000) Machining as a wedge indentation. J Appl Mech Trans ASME 67:128–139

    Article  MATH  Google Scholar 

  62. Ceretti E, Lazzaroni C, Menegardo L, Altan T (2000) Turning simulations using a three-dimensional FEM code. J Mater Process Technol 98:99–103

    Google Scholar 

  63. MacGinley T, Monaghan J (2001) Modelling the orthogonal machining process using coated cemented carbide cutting tools. J Mater Process Technol 118:293–300

    Google Scholar 

  64. Vaz Jr M, Owen DRJ (2001) Aspects of ductile fracture and adaptive mesh refinement in damaged elasto-plastic materials. Int J Numer Methods Eng 50:29–54

    MATH  Google Scholar 

  65. Klocke F, Raedt H-W, Hoppe S (2001) 2D-FEM simulation of the orthogonal high speed cutting process. Mach Sci Technol 5:323–340

    Google Scholar 

  66. Kalhori V (2001) Modelling and simulation of mechanical cutting. Ph.D. thesis, Luleå University of Technology, Luleå

  67. Borouchaki H, Cherouat A, Laug P, Saanouni K (2002) Adaptive remeshing for ductile fracture prediction in metal forming. Comptes Rendus Méc 330:709–716

    MATH  Google Scholar 

  68. Mamalis AG, Branis AS, Manolakos DE (2002) Modelling of precision hard cutting using implicit finite element methods. J Mater Process Technol 123:464–475

    Google Scholar 

  69. Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80:495–513

    Google Scholar 

  70. Mitrofanov AV, Babitsky VI, Silberschmidt VV (2003) Finite element simulations of ultrasonically assisted turning. Comput Mater Sci 28:645–653

    Google Scholar 

  71. Bäker M, Rösler J, Siemers C (2003) The influence of thermal conductivity on segmented chip formation. Comput Mater Sci 26:175–182

    Google Scholar 

  72. Bäker M (2003) The influence of plastic properties on chip formation. Comput Mater Sci 28:556–562

    Google Scholar 

  73. Yen Y-C, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146:72–81

    Google Scholar 

  74. Soo SL, Aspinwall DK, Dewes RC (2004) Three-dimensional finite element modelling of high-speed milling of Inconel 718. Proc Inst Mech Eng B J Eng Manuf 218:1555–1561

    Google Scholar 

  75. Umbrello D, Hua J, Shivpuri R (2004) Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Mater Sci Eng A 374:90–100

    Google Scholar 

  76. Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150:124–133

    Google Scholar 

  77. Fang G, Zeng P (2005) Three-dimensional thermo-elastic-plastic coupled FEM simulations for metal oblique cutting processes. J Mater Process Technol 168:42–48

    Google Scholar 

  78. Ee KC, Dillon Jr OW, Jawahir IS (2005) Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. Int J Mech Sci 47:1611–1628

    MATH  Google Scholar 

  79. Sartkulvanich P, Altan T, Göcmen A (2005) Effects of the flow stress and friction models in finite element simulation of orthogonal cutting—a sensitivity analysis. Mach Sci Technol 9:1–26

    Google Scholar 

  80. Bäker M (2005) Finite element investigation of the flow stress dependence of chip formation. J Mater Process Technol 167:1–13

    Google Scholar 

  81. Bäker M (2006) Finite element simulation of high-speed cutting forces. J Mater Process Technol 176:117–126

    Google Scholar 

  82. Rhim S-H, Oh S-I (2006) Prediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steel. J Mater Process Technol 171:417–422

    Google Scholar 

  83. Wen Q, Guo YB, Todd BA (2006) An adaptive FEA method to predict surface quality in hard machining. J Mater Process Technol 173:21–28

    Google Scholar 

  84. Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46:518–530

    Google Scholar 

  85. Dirikolu MH, Childs THC, Maekawa K (2001) Finite element simulation of chip flow in metal machining. Int J Mech Sci 43:2699–2713

    MATH  Google Scholar 

  86. Gu LZ, Wang D, Xing L, Chang J, Chen GJ (2002) Computer simulation and optimization of metal cutting process for mild carbon steels. J Mater Process Technol 129:60–65

    Google Scholar 

  87. Iwata K, Osakada K, Terasaka Y (1984) Process modeling of orthogonal cutting by the rigid plastic finite element method. J Eng Ind Trans ASME 106:132–138

    Google Scholar 

  88. Carrol III JT, Strenkowski JS (1988) Finite element models of orthogonal cutting with application to single point diamond turning. Int J Mech Sci 30:899–920

    Google Scholar 

  89. Strenkowski JS, Moon KJ (1990) Element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. J Eng Ind Trans ASME 112:313–318

    Google Scholar 

  90. Eldridge KF, Dillon OW, Lu WY (1991) Thermo-viscoplastic finite element modeling of machining under various cutting conditions. Trans NAMRI/SME XIX:162–169

    Google Scholar 

  91. Tyan T, Yang WH (1992) Analysis of orthogonal metal cutting processes. Int J Numer Methods Eng 34:365–389

    MATH  Google Scholar 

  92. Joshi VS, Dixit PM, Jain VK (1994) Viscoplastic analysis of metal cutting by finite element method. Int J Mach Tools Manuf 34:553–571

    Google Scholar 

  93. Wu J-S, Dillon Jr OW, Lu W-Y (1996) Thermo-viscoplastic modeling of machining using a mixed finite element method. J Manuf Sci Eng Trans ASME 118:470–482

    Google Scholar 

  94. Strenkowski JS, Athavale SM (1997) A partially constrained Eulerian orthogonal cutting model for chip control tools. J Manuf Sci Eng Trans ASME 119:681–688

    Google Scholar 

  95. Kim KW, Lee WY, Sin H-C (1999) A finite element analysis for the characteristics of temperature and stress in micro-machining considering the size effect. Int J Mach Tools Manuf 39:1507–1524

    Google Scholar 

  96. Kim KW, Lee WY, Sin H-C (1999) A finite-element analysis of machining with the tool edge considered. J Mater Process Technol 86:45–55

    Google Scholar 

  97. Raczy A, Elmadagli M, Altenhof WJ, Alpas AT (2004) An Eulerian finite-element model for determination of deformation state of a copper subjected to orthogonal cutting. Metall Mater Trans A 35:2393–2400

    Google Scholar 

  98. Rakotomalala R, Joyot P, Touratier M (1993) Arbitrary Lagrangian–Eulerian thermomechanical finite-element model of material cutting. Commun Numer Methods Eng 9:975–987

    MATH  Google Scholar 

  99. Olovsson L, Nilsson L, Simonsson K (1999) An ALE formulation for the solution of two-dimensional metal cutting problems. Comput Struct 72:497–507

    MATH  Google Scholar 

  100. Movahhedy M, Gadala MS, Altintas Y (2000) Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian–Eulerian finite-element method. J Mater Process Technol 103:267–275

    Google Scholar 

  101. Benson DJ, Okazawa S (2004) Contact in a multi-material Eulerian finite element formulation. Comput Methods Appl Mech Eng 193:4277–4298

    MATH  Google Scholar 

  102. Pantalé O, Bacaria J-L, Dalverny O, Rakotomalala R, Caperaa S (2004) 2D and 3D numerical models of metal cutting with damage effects. Comput Methods Appl Mech Eng 193:4383–4399

    MATH  Google Scholar 

  103. Madhavan V, Adibi-Sedeh AH (2005) Understanding of finite element analysis results under the framework of Oxley’s machining model. Mach Sci Technol 9:345–368

    Google Scholar 

  104. Kalhori V, Lundblad M, Lindgren L-E (1997) Numerical and experimental analysis of orthogonal metal cutting. In: Manufacturing science and engineering. Proceedings of the 1997 ASME international mechanical engineering congress & exposition. MED, vol 6-2. ASME, New York, pp 29–35

    Google Scholar 

  105. Zhang B, Bagchi A (1994) Finite element simulation of chip formation and comparison with machining experiments. J Eng Ind Trans ASME 116:289–297

    Article  Google Scholar 

  106. Agelet de Saracibar C, Chiumenti M (1999) On the numerical modeling of frictional wear phenomena. Comput Methods Appl Mech Eng 177:401–426

    MATH  MathSciNet  Google Scholar 

  107. Armero F, Simo JC (1992) A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems. Int J Numer Methods Eng 35:737–766

    MATH  MathSciNet  Google Scholar 

  108. Armero F, Simo JC (1993) A priori stability estimates and unconditionally stable product algorithms for nonlinear coupled thermoplasticity. Int J Plasticity 9:749–782

    MATH  Google Scholar 

  109. Zorev NN (1963) Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting. In: Proceedings of the international research in production engineering conference. ASME, New York, pp 42–49

    Google Scholar 

  110. Curnier A, Alart P (1988) A generalized Newton method to contact problems with friction. J Méc Théor Appl 7:67–82

    MathSciNet  Google Scholar 

  111. Hallquist JO, Goudreau GL, Benson DJ (1985) Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng 51:107–137

    MATH  MathSciNet  Google Scholar 

  112. Heegaard J-H, Curnier A (1993) An augmented Lagrangian method for discrete large slip contact problems. Int J Numer Methods Eng 36:569–593

    MATH  MathSciNet  Google Scholar 

  113. Michalowski R, Mroz Z (1978) Associated and non-associated sliding rules in contact friction problems. Arch Mech 30:259–276

    MATH  Google Scholar 

  114. Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 94:373–389

    MATH  Google Scholar 

  115. Perić D, Owen DRJ (1992) Computational model for 3-D contact problems with friction based on the penalty method. Int J Numer Methods Eng 35:1289–1309

    MATH  Google Scholar 

  116. Wriggers P, Simo JC, Taylor RL (1985) Penalty and augmented Lagrangian formulations for contact problems. In: Middleton J, Pande GN (eds) Numerical methods in engineering: theory and applications. Proceedings of the international conference on advances in numerical methods in engineering: theory & applications. Balkema, pp. 97–106

  117. Laursen TA, Simo JC (1993) A continuum-based finite element formulation for the implicit solution of multibody, large-deformation, frictional, contact problems. Int J Numer Methods Eng 36:3451–3485

    MATH  MathSciNet  Google Scholar 

  118. Ju J-W, Taylor RL, Cheng LY (1987) A consistent finite element formulation of nonlinear frictional contact problems. In: Pande GN, Middleton J (eds) Numerical methods in engineering: theory and applications. Proceedings of the second international conference on advances in numerical methods in engineering: theory & applications, vol 1. Martinus Nijhoff, Dordrecht, pp 1–13

    Google Scholar 

  119. Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180

    MATH  MathSciNet  Google Scholar 

  120. Belytschko T, Neal MO (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31:547–572

    MATH  Google Scholar 

  121. Hallquist JO (1986) NIKE2D—a vectorized implicit, finite deformation, finite element code for analyzing static and dynamic response of 2-D solids with interactive rezoning and graphics. UCID-19677, Rev. 1, Lawrence Livermore National Laboratories

  122. Oldenburg M, Nilsson L (1994) The position code algorithm for contact searching. Int J Numer Methods Eng 37:359–386

    MATH  Google Scholar 

  123. Hallquist JO, Schweizerhof K, Stillman D (1992) Efficiency refinements of contact strategies and algorithms in explicit F.E. programming. In: Owen DRJ, Oñate E, Hinton E (eds) Computational plasticity: fundamentals & applications. Proceedings of the third international conference on computational plasticity. Pineridge, Swansea, pp 457–481

    Google Scholar 

  124. Crisfield MA (1987) Non-linear finite element analysis of solids and structures. Advanced topics, vol 2. Wiley, New York

    Google Scholar 

  125. Crisfield MA (2000) Re-visiting the contact patch test. Int J Numer Methods Eng 48:435–449

    MATH  Google Scholar 

  126. Zavarise G, Wriggers P, Schrefler BA (1998) A method for solving contact problems. Int J Numer Methods Eng 42:473–498

    MATH  Google Scholar 

  127. Fletcher R (1989) Practical methods of optimisation, 2nd edn. Wiley, New York

    Google Scholar 

  128. Lorong Ph, Yvonnet J, Coffignal G, Cohen S (2006) Contribution of computational mechanics in numerical simulation of machining and blanking: state-of-the-art. Arch Comput Methods Eng 13:45–90

    MATH  Google Scholar 

  129. McDill JMJ, Runnemalm KH, Oddy AS (2001) An 8- to 16-node solid graded shell element for far-field applications in thermal-mechanical FEA. J Math Model Sci Comput 13:177–192

    Google Scholar 

  130. Oddy AS, Goldak JA, McDill JMJ, Bibby MJ (1988) A distortion metric for iso-parametric finite elements. CSME Trans 12:213–217

    Google Scholar 

  131. Hyun S, Lindgren L-E (2001) Smoothing and adaptive remeshing schemes for graded element. Commun Numer Methods Eng 17:1–17

    MATH  Google Scholar 

  132. Babuška I, Rheinboldt WC (1978) A-posteriori error estimate for the finite element method. Int J Numer Methods Eng 12:1597–1615

    MATH  Google Scholar 

  133. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24:337–357

    MATH  MathSciNet  Google Scholar 

  134. Babuška I, Strouboulis T, Upadhyay CS, Gangaraj SK, Copps K (1994) An objective criterion for assessing the reliability of “a posteriori” error estimators in finite element computations. IACM Bull 9:27–37

    Google Scholar 

  135. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part I: the recovery technique. Int J Numer Methods Eng 33:1331–1364

    MATH  MathSciNet  Google Scholar 

  136. Labbé P, Garon A (1995) A robust implementation of Zienkiewicz and Zhu’s local patch recovery method. Commun Numer Methods Eng 40:2195–2226

    Google Scholar 

  137. Perić D, Yu J, Owen DRJ (1994) On error estimates and adaptivity in elasto-plastic solids: application to the numerical simulation of localization in classical and Cosserat continua. Int J Numer Methods Eng 37:1351–1379

    MATH  Google Scholar 

  138. Perić D, Vaz M Jr, Owen DRJ (1999) On adaptive strategies for large deformations of elasto-plastic solids at finite strains: computational issues and industrial applications. Comput Methods Appl Mech Eng 176:279–312

    MATH  Google Scholar 

  139. Lemaitre J (1991) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol Trans ASME 107:83–89

    Article  Google Scholar 

  140. Ortiz M, Quigley IV JJ (1991) Adaptive mesh refinement in strain localization problems. Comput Methods Appl Mech Eng 90:781–804

    Google Scholar 

  141. Lee N-S, Bathe K-J (1994) Error indicators and adaptive remeshing in large deformation finite element analysis. Finite Element Anal Des 16:99–139

    MATH  MathSciNet  Google Scholar 

  142. Perić D, Hochard Ch, Dutko M, Owen DRJ (1996) Transfer operators for evolving meshes in small strain elasto-plasticity. Comput Methods Appl Mech Eng 137:331–344

    MATH  Google Scholar 

  143. Dutko M, Perić D, Owen DRJ, Wei Z, Yu J (1997) Bulk forming simulation by adaptive explicit FEM. In: Owen DRJ, Oñate E, Hinton E (eds) Computational plasticity: fundamentals and applications. Proceedings of the fifth international conference on computational plasticity. Pineridge, Swansea, pp 1305–1312

    Google Scholar 

  144. Cockcroft MG, Latham DJ (1968) Ductility and workability of metals. J Inst Metals 96:33–39

    Google Scholar 

  145. Osakada K, Watadani A, Sekiguchi H (1977) Ductile fracture of carbon steel under cold metal forming conditions. Bull JSME 20:1557–1565

    Google Scholar 

  146. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48

    Google Scholar 

  147. Rice JR, Tracey DM (1969) On ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217

    Google Scholar 

  148. Brozzo P, De Luca B, Rendina R (1972) A new method for the prediction of formability limit of metal sheet. In: Veerman C (ed) Proceedings of the 7th biennial conference of the international deep drawing research group. IDDRG, pp 3.1–3.5

  149. Third Wave Systems (2002) Third wave advantedge—theoretical manual, Minneapolis, USA

  150. Belytschko T, Bindeman LP (1991) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput Methods Appl Mech Eng 88:311–340

    MATH  MathSciNet  Google Scholar 

  151. Recht RF (1994) Catastrophic thermoplastic shear. J Appl Mech Trans ASME 31:189–193

    Google Scholar 

  152. Bai Y, Dodd B (1992) Adiabatic shear localization: occurrence, theories and applications. Pergamon, New York

    Google Scholar 

  153. Bai Y, Xue Q, Xu Y, Shen L (1994) Characteristics and microstructure in the evolution of shear localization in Ti–6Al–4V alloy. Mech Mater 17:155–164

    Google Scholar 

  154. Komanduri R, von Turkovich BF (1981) New observations on the mechanism of chip formation when machining titanium alloys. Wear 69:179–188

    Google Scholar 

  155. MSC.Software Corporation (2001) MSC.SuperForm user’s manual. Version 2002. Santa Ana, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vaz Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaz, M., Owen, D.R.J., Kalhori, V. et al. Modelling and Simulation of Machining Processes. Arch Computat Methods Eng 14, 173–204 (2007). https://doi.org/10.1007/s11831-007-9005-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-007-9005-7

Keywords

Navigation