Skip to main content
Log in

A Comparative Study of Recent Non-traditional Methods for Mechanical Design Optimization

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

A Correction to this article was published on 19 June 2019

This article has been updated

Abstract

Solving practical mechanical problems is considered as a real challenge for evaluating the efficiency of newly developed algorithms. The present article introduces a comparative study on the application of ten recent meta-heuristic approaches to optimize the design of six mechanical engineering optimization problems. The algorithms are: the artificial bee colony (ABC), particle swarm optimization (PSO) algorithm, moth-flame optimization (MFO), ant lion optimizer (ALO), water cycle algorithm (WCA), evaporation rate WCA (ER-WCA), grey wolf optimizer (GWO), mine blast algorithm (MBA), whale optimization algorithm (WOA) and salp swarm algorithm (SSA). The performances of the algorithms are tested quantitatively and qualitatively using convergence speed, solution quality, and the robustness. The experimental results  on the six mechanical problems demonstrate the efficiency and the ability of the algorithms used in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 19 June 2019

    This erratum is published due to inconsistencies observed in referencing & citations on the final version.

References

  1. Abderazek H, Ferhat D, Ivana A (2017) Adaptive mixed differential evolution algorithm for bi-objective tooth profile spur gear optimization. Int J Adv Manuf Technol 90(5–8):2063–2073

    Google Scholar 

  2. Abderazek H, Ferhat D, Atanasovska I, Boualem K (2015) A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears. Adv Mech Eng 7(9):1–11

    Google Scholar 

  3. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38(10):13170–13180

    Google Scholar 

  4. Beyer HG, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52

    MathSciNet  MATH  Google Scholar 

  5. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Google Scholar 

  6. Coello CAC (2000) Treating constraints as objectives for single-objective evolutionary optimization. Engineering Optimization 32(3):275–308

    Google Scholar 

  7. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. J Murray, London

    Google Scholar 

  8. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    MATH  Google Scholar 

  9. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Google Scholar 

  10. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization—artificial ants as a computational intelligence technique. IEEE Comput Intell Mag 1:28–39

    Google Scholar 

  11. Du H, Xiaodong, W, Jian Z (2006) Small-world optimization algorithm for function optimization. In: International conference on natural computation, Springer, Berlin

  12. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111

    Google Scholar 

  13. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Google Scholar 

  14. Formato RA (2009) Central force optimization: a new deterministic gradient-like optimization metaheuristic. Opsearch 46(1):25–51

    MathSciNet  MATH  Google Scholar 

  15. Gandomi AH, Kashani AR (2018) Construction cost minimization of shallow foundation using recent swarm intelligence techniques. IEEE T Ind Inform 14(3):1099–1106

    Google Scholar 

  16. Gentle JE (2003) Random number generation and Monte Carlo methods. Springer, Berlin

    MATH  Google Scholar 

  17. Giraud-Moreau L, Lafon P (2002) A comparison of evolutionary algorithms for mechanical design components. Engineering Optimization 34(3):307–322

    Google Scholar 

  18. Gu L, Yang RJ, Tho CH, Makowskit M, Faruquet O, Y-Li YL (2001) Optimisation and robustness for crashworthiness of side impact. Int J Veh Des 26(4):348–360

    Google Scholar 

  19. Gupta S, Tiwari R, Nair SB (2007) Multi-objective design optimisation of rolling bearings using genetic algorithms. Mech Mach Theory 42(10):1418–1443

    MATH  Google Scholar 

  20. Hamza F, Abderazek H, Lakhdar S, Ferhat D, Yildiz AR (2018) Optimum design of cam-roller follower mechanism using a new evolutionary algorithm. Int J Adv Manuf Technol 99(5–8):1267–1282

    MathSciNet  Google Scholar 

  21. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    MathSciNet  Google Scholar 

  22. Ho-Huu V, Nguyen-Thoi T, Nguyen-Thoi MH, Le-Anh L (2015) An improved constrained differential evolution using discrete variables (D-ICDE) for layout optimization of truss structures. Expert Syst Appl 42(20):7057–7069

    Google Scholar 

  23. Ho-Huu V, Nguyen-Thoi T, Truong-Khac T, Le-Anh L, Vo-Duy T (2016) An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints. Neural Comput Appl 29(1):167–185

    Google Scholar 

  24. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  25. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    MathSciNet  MATH  Google Scholar 

  26. Karagöz S, Yildiz AR (2017) A comparison of recent metaheuristic algorithms for crashworthiness optimization of vehicle thin-walled tubes considering sheet metal forming effects. Int J Veh Des 73(1–3):179–188

    Google Scholar 

  27. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Google Scholar 

  28. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27

    Google Scholar 

  29. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    MATH  Google Scholar 

  30. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  31. Kiani M, Yildiz AR (2016) A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Arch Comput Methods Eng 23(4):723–734

    MathSciNet  MATH  Google Scholar 

  32. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  33. Koza JR (1992) Genetic programming II, automatic discovery of reusable subprograms. MIT Press, Cambridge

    Google Scholar 

  34. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  35. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Google Scholar 

  36. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Google Scholar 

  37. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  38. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  39. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  40. Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv, preprint arXiv:1208

  41. Oftadeh R, Mahjoob M, Shariatpanahi MA (2010) Novel meta-heuristic optimisation algorithm inspired by group hunting of animals: hunting search. Comput Math Appl 60(7):2087–2098

    MATH  Google Scholar 

  42. Pholdee N, Bureerat S, Yildiz AR (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73(1–3):20–53

    Google Scholar 

  43. Qing A (2009) Differential evolution: fundamentals and applications in electrical engineering. Wiley, New York

    Google Scholar 

  44. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315

    Google Scholar 

  45. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  46. Saravanan R (2006) Manufacturing optimization through intelligent techniques. CRC Press, Boca Raton

    Google Scholar 

  47. Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6(1–2):132–140

    Google Scholar 

  48. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102:49–63

    Google Scholar 

  49. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  50. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl Soft Comput 30:58–71

    Google Scholar 

  51. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures. Comput Struct 149:1–16

    Google Scholar 

  52. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. ASME J Mech Des 112:223–229

    Google Scholar 

  53. Shiqin Y, Jianjun J, Guangxing Y (2009) A dolphin partner optimization. In: Global congress on intelligent systems. IEEE, pp 124–128

  54. Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12(6):702–713

    Google Scholar 

  55. Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI

  56. Takahama T, Sakai S (2010) Efficient constrained optimization by the epsilon constrained adaptive differential evolution. In: Proceedings of 2010 IEEE congress on evolutionary computation (CEC2010)

  57. Yang X-S, Deb S. (2009) Cuckoo search via levy flights. In: Proceedings of the world congress on nature and biologically inspired computing (NaBIC-2009), Coimbatore, India, pp 210–214

  58. Yang C, Tu X, Chen J (2007) Algorithm of marriage in honey bees optimization based on the wolf pack search. In: IEEE 2007 international conference on intelligent pervasive computing (IPC), pp 462–467

  59. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

  60. Yildiz AR (2009) A new design optimization framework based on immune algorithm and Taguchi's method. Comput Ind 60(8):613–620

    Google Scholar 

  61. Yildiz AR (2009) A novel hybrid immune algorithm for global optimization in design and manufacturing. Robotics Comput-Integr Manufactur 25(2):261–270

    Google Scholar 

  62. Yildiz AR (2012) A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry. Proc Inst Mech Eng Part D J Automob Eng 226(10):1340–1351

    Google Scholar 

  63. Yildiz AR (2013) A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl Soft Comput 13(3):1561–1566

    Google Scholar 

  64. Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333

    Google Scholar 

  65. Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61

    Google Scholar 

  66. Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13(3):1433–1439

    Google Scholar 

  67. Yildiz AR (2013) A new hybrid bee colony optimization approach for robust optimal design and manufacturing. Appl Soft Comput 13(5):2906–2912

    Google Scholar 

  68. Yildiz BS (2017) A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. Int J Veh Des 73(1–3):208–218

    Google Scholar 

  69. Yildiz BS (2017) Natural frequency optimization of vehicle components using the interior search algorithm. Mater Test 59(5):456–458

    Google Scholar 

  70. Yildiz AR, Saitou K (2011) Topology synthesis of multi component structural assemblies in continuum domains. J Mech Des 133(1):011008

    Google Scholar 

  71. Yildiz BS, Yildiz AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater Test 59(5):425–429

    Google Scholar 

  72. Yildiz BS, Yildiz AR (2018) Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Mater Test 60(3):311–315

    Google Scholar 

  73. Yildiz BS, Lekesiz H, Yildiz AR (2016) Structural design of vehicle components using gravitational search and charged system search algorithms. Mater Test 58(1):79–81

    Google Scholar 

  74. Yildiz AR, Kurtulus E, Demirci E, Yildiz BS, Karagoz S (2016) Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm. Mater Test 58(1):75–78

    Google Scholar 

  75. Yildiz AR, Kıilicarpa UA, Demirci E, Dogan M (2019) Topography and topology optimization of diesel engine components for lightweight design in the automotive industry. Mater Test 61(1):27–34

    Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledge the support provided by Bursa Uludag University Scientific Research Projects Centre (BAP) under Grant Nos. BUAP(MH)-2019/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Riza Yildiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  1. 1.

    Coupling with a bolted rim

The problem can be mathematically formulated as follows:

Objective function: \(f\left( x \right) = \beta_{1} \left( {\frac{N}{{N_{m} }}} \right) + \beta_{2} \left( {\frac{{R_{B} + \phi_{4} (d) + c}}{{R_{m} }}} \right) + \beta_{3} \left( {\frac{M}{{M_{T} }}} \right)\)

Subject to:

$$\begin{aligned} g_{1} (x) & = \frac{\alpha M}{{NR_{B} K(d)}} - 1 \le 0, \, g_{2} (x) = 1 - \frac{{2\pi R_{B} }}{{\phi_{5} (d)N}} \le 0 \\ g_{3} (x) & = 1 - \frac{{R_{B} }}{{\phi_{4} (d)}} + R_{M} \le 0, \, g_{4} (x) = N - N_{\hbox{max} } \le 0 \\ g_{5} (x) & = R_{B} - R_{\hbox{max} } \le 0, \, g_{6} (x) = N_{M} - N \le 0 \\ g_{7} (x) & = R_{M} - R_{B} \le 0, \, g_{8} (x) = M - M_{\hbox{max} } \le 0 \\ g_{9} (x) & = M_{T} - M \le 0, \, g_{10} (x) = d - 24 \le 0 \\ g_{11} (x) & = 6 - d \le 0 \\ \end{aligned}$$

where \(K(d) = \frac{{0.9f_{m} R_{e} \pi \left( {\phi_{1} (d)} \right)^{2} }}{{4\sqrt {1 + 3(0.16\phi_{3} (d)f_{1} /\phi_{1} (d))^{2} } }}, \, M_{T} = 40\,{\text{Nm}}, \, M_{\hbox{max} } = 1000\,{\text{Nm}}, \, f_{m} = 0.15, \, f_{1} = 0.15\)

$$\begin{aligned} \alpha & = 1.5, \, R_{e} = 627\,{\text{MPa}}, \, N_{M} = 8, \, N_{\hbox{max} } = 100, \, R_{M} = 50\,{\text{mm}}, \, R_{\hbox{max} } = 1000\,{\text{mm}}, \, c = 5\,{\text{mm}}, \, \beta_{1} = \beta_{2} = \beta_{3} = 1. \\ & \quad 6 \le d \le 24 , { }8 \le N \le 100, \, 50 \le R_{B} \le 100,40 \le M \le 100. \\ \end{aligned}$$

See Table 15.

Table 15 Discrete values for bolts
  1. 2.

    Car side impact design

The problem can be mathematically formulated as follows:Objective function: \(f\left( x \right) = 1.98 + 4.90x_{1} + 6.67x_{2} + 6.98x_{3} + 4.01x_{4} + 1.78x_{5} + 2.73x_{7}\)

Subject to:

$$g_{1} (x) = 1.16 - 0.3717x_{2} x_{4} - 0.00931x_{2} x_{10} - 0.484x_{3} x_{9} + 0.01343x_{6} x_{10} \le 1$$
$$\begin{aligned} g_{2} (x) = 0.261 - 0.0159x_{1} x_{2} - 0.188x_{1} x_{8} - 0.019x_{2} x_{7} + 0.0144x_{3} x_{5} + 0.0008757x_{5} x_{10} + 0.080405x_{6} x_{9} \hfill \\ \, +\, 0.00139x_{8} x_{11} + 0.00001575x_{10} x_{11} \le 0.32 \hfill \\ \end{aligned}$$
$$\begin{aligned} g_{3} (x) & = 0.214 + 0.00817x_{5} - 0.131x_{1} x_{8} - 0.0704x_{1} x_{9} + 0.03099x_{2} x_{6} - 0.018x_{2} x_{7} + 0.0208x_{3} x_{8} \\ & \quad + \,0.121x_{3} x_{9} - 0.00364x_{5} x_{6} + 0.0007715x_{5} x_{10} - 0.0005354x_{6} x_{10} + 0.00121x_{8} x_{11} \le 0.32 \\ \end{aligned}$$
$$g_{4} (x) = 0.074 - 0.061x_{2} - 0.163x_{3} x_{8} + 0.001232x_{3} x_{10} - 0.166x_{7} x_{9} + 0.227x_{2 \, }^{2} \le 0.32$$
$$g_{5} (x) = 28.98 + 3.818x_{3} - 4.2x_{1} x_{2} + 0.0207x_{5} x_{10} + 6.63x_{6} x_{9} - 7.7x_{7} x_{8} + 0.32x_{9} x_{10} \le 32$$
$$g_{6} (x) = 33.86 + 2.95x_{3} + 0.1792x_{10} - 5.057x_{1} x_{2} - 11.0x_{2} x_{8} - 0.0215x_{5} x_{10} - 9.98x_{7} x_{8} + 22.0x_{8} x_{9} \le 32$$

\(g_{7} (x) = 46.36 - 9.9x_{2} - 12.9x_{1} x{}_{8} + 0.1107x_{3} x_{10} \le 32\)

$$g_{8} (x) = 4.72 - 0.5x_{4} - 0.19x_{2} x_{3} - 0.0122x_{4} x_{10} + 0.009325x_{6} x_{10} + 0.000191x_{11}^{2} \le 4$$
$$g_{9} (x) = 10.58 - 0.674x_{1} x_{2} - 1.95x_{2} x_{8} + 0.02054x_{3} x_{10} - 0.0198x_{4} x_{10} + 0.028x_{6} x_{10} \le 9.9$$
$$g_{10} (x) = 16.45 - 0.489x_{3} x_{7} - 0.843x_{5} x_{6} + 0.0432x_{9} x_{10} - 0.0556x_{9} x_{11} - 0.000786x_{11 \, }^{2} \le 15.7$$

where \(0.5 \le x_{1} - x_{7} \le 1.5,x_{8} ,x_{9} \in (0.192,0.345)\) and \(- 30 \le x_{10} ,x_{11} \le 30.\)

  1. 3.

    Rolling element bearing

The problem can be mathematically formulated as follows:

Objective function:

$$f(x) = \left\{ \begin{aligned} C_{d}& = f_{c} Z^{{\frac{2}{3}}} D_{{^{b} }}^{1.8} {\text{ if }}D_{b} \le 25.4\,{\text{mm}} \hfill \\ C_{d} & = 3.647f_{c} Z^{{\frac{2}{3}}} D_{{^{b} }}^{1.4} {\text{ if }}D_{b} > 25.4\,{\text{mm}} \hfill \\ \end{aligned} \right.$$

Subject to:

$$\begin{aligned} g_{1} (x) & = \frac{{\phi_{0} }}{{2\sin^{ - 1} \left( {\frac{{D_{b} }}{{D_{m} }}} \right)}} - Z + 1 \ge 0, \, g_{2} (x) = 2D_{b} - K_{D\hbox{min} } \left( {D - d} \right) \ge 0 \\ g_{3} (x) & = K_{D\hbox{max} } \left( {D - d} \right) - 2D_{b} \ge 0, \, g_{4} (x) = \zeta B_{\omega } - D_{b} \ge 0 \\ g_{5} (x) & = D_{m} - 0.5\left( {D + d} \right) \ge 0, \, g_{6} (x) = \left( {0.5 + e} \right)\left( {D + d} \right) - D_{m} \ge 0 \\ g_{7} (x) & = 0.5\left( {D - D_{m} - D_{b} } \right) - \varepsilon D_{b} \ge 0, \, g_{8} (x) = f_{i} - 0.515 \ge 0 \\ \end{aligned}$$
$$g_{9} (x) = f_{o} - 0.515 \ge 0$$

where

$$f_{c} = 37.91\left[ {1 + \left\{ {1.04\left( {\frac{1 - \gamma }{1 + \gamma }} \right)^{1.72} \left( {\frac{{f_{i} \left( {2f_{o} - 1} \right)}}{{f_{o} \left( {2f_{i} - 1} \right)}}} \right)^{0.41} } \right\}^{10/3} } \right]^{ - 0.3} , \, \gamma = \frac{{D_{b} \cos \alpha }}{{D_{m} }}, \, f_{i} = \frac{{r_{i} }}{{D_{b} }}, \, f_{o} = \frac{{r_{o} }}{{D_{b} }}$$
$$\phi_{0} = 2\pi - 2\cos^{ - 1} \left( {\frac{{\left\{ {\left( {D - d} \right)/2 - 3\left( {T/4} \right)} \right\}^{2} + \left\{ {D/2 - T/4 - D_{b} } \right\}^{2} - \left\{ {d/2 - T/4} \right\}^{2} }}{{2\left\{ {\left( {D - d} \right)/2 - 3\left( {T/4} \right)} \right\}\left\{ {D/2 - T/4 - D_{b} } \right\}}}} \right)$$

where \(T = D - d - 2D_{b} , \, D = 160, \, d = 90, \, \beta_{\omega } = 30,0.5\left( {D + d} \right) \le D_{m} \le 0.6\left( {D + d} \right),0.15\left( {D - d} \right) \le D_{b} \le 0.45\left( {D - d} \right),\)\(4 \le Z \le 50,0.515 \le f_{i} \le 0.6,0.515 \le f_{o} \le 0.6,0.6 \le K_{D\hbox{max} } \le 0.7,0.3 \le \varepsilon \le 0.4,0.02 \le e \le 0.1,0.6 \le f_{i} \le 0.85.\)

  1. 4.

    Step-cone pulley

The problem can be mathematically formulated as follows:

Objective function:

$$f(x) = \rho \omega \left[ {d_{1}^{2} \left\{ {1 + \left( {\frac{{N_{1} }}{N}} \right)^{2} } \right\} + d_{2}^{2} \left\{ {1 + \left( {\frac{{N_{2} }}{N}} \right)^{2} } \right\} + \,d_{3}^{2} \left\{ {1 + \left( {\frac{{N_{3} }}{N}} \right)^{2} } \right\} +\, d_{4}^{2} \left\{ {1 + \left( {\frac{{N_{4} }}{N}} \right)^{2} } \right\}} \right]$$

Subject to:

$$\begin{aligned} h_{1} (x) & = c_{1} - c_{2} = 0,\quad \quad h_{2} (x) & = c_{1} - c_{3} = 0 \\ h_{3} (x) & = c_{1} - c_{4} = 0,\quad \quad \, g_{1,2,3,4} (x) & = R_{i} \ge 2 \\ g_{5,6,7,8} (x) & = P_{i} \ge \left( {0.75 \times 745.6998} \right) \, \\ \end{aligned}$$

where:

  • \(C_{i}\) indicates the length of the belt to obtain speed \(N_{i}\) and is given by

    $$C_{i} = \frac{{\pi d_{i} }}{2}\left( {1 + \frac{{N_{i} }}{N}} \right) + \frac{{\left( {\frac{{N_{i} }}{N} - 1} \right)^{2} }}{4a} + 2a,\quad \, i = 1, \ldots ,4$$
  • \(R_{i}\) is the tension ratio and is given by

    $$R_{i} = \exp \left[ {\mu \left\{ {\pi - 2\sin^{ - 1} \left\{ {\left( {\frac{{N_{i} }}{N} - 1} \right)\frac{{d_{i} }}{2a}} \right\}} \right\}} \right], \, i = 1, \ldots ,4$$
  • \(P_{i}\) is the power transmitted at each step

    $$R_{i} = st\omega \left[ {1 - \exp \left[ { - \mu \left\{ {\pi - 2\sin^{ - 1} \left\{ {\left( {\frac{{N_{i} }}{N} - 1} \right)\frac{{d_{i} }}{2a}} \right\}} \right\}} \right]} \right]\frac{{\pi d_{i} N_{i} }}{60}, \, i = 1, \ldots ,4$$
    $$\rho_{1} = 7200\,{\text{kg/m}}^{3} , \, a = 3\,{\text{m}}, \, \mu = 0.35, \, s = 1.75\,{\text{MPa}}, \, t = 8\,{\text{mm}},40 \le d_{i} \le 100,\,16 \le \omega \le 100.$$
  1. 5.

    Belleville spring

The problem can be mathematically formulated as follows:

Objective function:\(f(x) = 0.07075\pi \left( {D_{e}^{2} - D_{i}^{2} } \right)t\)

Subject to:

$$\begin{aligned} g_{1} (x) & = S - \frac{{4E\delta_{\hbox{max} } }}{{\left( {1 - \mu^{2} } \right)\alpha D_{e}^{2} }}\left[ {\beta \left( {h - \frac{{\delta_{\hbox{max} } }}{2}} \right) + \gamma t} \right] \ge 0 \\ g_{2} (x) & = \left( {\frac{4E\delta }{{\left( {1 - \mu^{2} } \right)\alpha D_{e}^{2} }}\left[ {\left( {h - \frac{\delta }{2}} \right)\left( {h - \delta } \right)t + t^{3} } \right]} \right) - P_{\hbox{max} } \ge 0 \\ \end{aligned}$$
$$\begin{aligned} g_{3} (x) & = \delta_{l} - \delta_{\hbox{max} } \ge 0,\quad \quad \, g_{4} (x) = H - h - t \ge 0 \\ g_{5} (x) & = D_{\hbox{max} } - D_{e} - \ge 0,\quad \quad \, g_{6} (x) & = D_{e} - D_{i} \ge 0 \\ g_{7} (x) & = 0.3 - \left( {\frac{h}{{D_{e} - D_{i} }}} \right) \ge 0 \\ \end{aligned}$$

where \(\alpha = \left( {\frac{6}{\pi \ln \left( K \right)}} \right)\left( {\frac{K - 1}{K}} \right)^{2} ,\beta = \left( {\frac{6}{\pi \ln \left( K \right)}} \right)\left( {\frac{K - 1}{K} - 1} \right),\gamma = \left( {\frac{6}{\pi \ln \left( K \right)}} \right)\left( {\frac{K - 1}{2}} \right)\)\(P = \frac{{\log_{10} \log_{10} \left( {8.122{\text{e}}6\mu + 0.8} \right) - C_{1} }}{n},h = \left( {\frac{2\pi N}{60}} \right)^{2} \left( {\frac{2\pi \mu }{{E_{f} }}} \right)\left( {\frac{{R^{4} }}{4} - \frac{{R_{o}^{4} }}{4}} \right),P_{\hbox{max} } = 1000\,{\text{lb}},\;\delta_{\hbox{max} } = 0.2\,{\text{in}} .,\;S = 200\,{\text{KPsi}},\)\(E = 30e6\,psi,\;\mu = 0.3,\;H = 2\,{\text{in}} .,\;D_{\hbox{max} } = 12.01\,{\text{in}} .,\;K = \frac{{D_{e} }}{{D_{i} }},\;\delta \left( l \right) = f\left( a \right)a,\;a = \frac{h}{t}.\)

$$5 \le D_{e} \le 15,5 \le D_{i} \le 15,0.2 \le t \le 0.25,0.2 \le h \le 0.25.$$

See Table 16.

Table 16 Variation of \(f\left( a \right)\) with a
  1. 6.

    Speed Reducer

The problem can be mathematically formulated as follows:Objective function: \(f\left( x \right) = 0.7854bm^{2} \left( {3.3333z^{2} + 14.9334z - 43.0934} \right) - 1.508b\left( {d_{1}^{2} + d_{2}^{2} } \right) + 7.4777\left( {d_{1}^{3} + d_{2}^{3} } \right) + 0.7854\left( {l_{1} d_{1}^{2} + l_{2} d_{2}^{2} } \right)\)

Subject to:

$$\begin{aligned} g_{1} (x) & = \frac{27}{{b \, m^{2} z}} - 1 \le 0,\quad \quad g_{2} (x) = \frac{397.5}{{bm^{2} z^{2} }} - 1 \le 0 \\ g_{3} (x) & = \frac{{1.93l_{1}^{3} }}{{mzd_{1}^{4} }} - 1 \le 0,\quad \quad g_{4} (x) = \frac{{1.93l_{2}^{3} }}{{mzd_{2}^{4} }} - 1 \le 0 \\ g_{5} (x) & = \frac{{\sqrt {\left( {\frac{{745l_{1} }}{mz}} \right)^{2} + 16.9 \times 10^{6} } }}{{\left( {110d_{1}^{3} } \right)}} - 1 \le 0,\quad \quad g_{6} (x) = \frac{{\sqrt {\left( {\frac{{745l_{2} }}{mz}} \right)^{2} + 157.5 \times 10^{6} } }}{{\left( {85d_{2}^{3} } \right)}} - 1 \le 0 \\ g_{7} (x) & = \frac{mz}{40} - 1\le 0,\quad \quad g_{8} (x) = \frac{5m}{b} - 1 \le 0 \\ g_{9} (x) & = \frac{b}{ 1 2m} - 1\le 0,\quad \quad g_{10} (x) = \frac{{1.5d_{1} + 1.9}}{{l_{1} }} - 1 \le 0 \\ g_{11} (x) & = \frac{{1.1d_{2} + 1.9}}{{l_{2} }} - 1 \le 0 \\ \end{aligned}$$

where \(2.6 \le b \le 3.6,0.7 \le m \le 0.8,17 \le z \le 28,7.3 \le l_{1} \le 8.3,7.3 \le l_{2} \le 8.3,2.9 \le d_{1} \le 3.9\) and \(5 \le d_{2} \le 5.5.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, A.R., Abderazek, H. & Mirjalili, S. A Comparative Study of Recent Non-traditional Methods for Mechanical Design Optimization. Arch Computat Methods Eng 27, 1031–1048 (2020). https://doi.org/10.1007/s11831-019-09343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09343-x

Navigation